www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Untervektorraum von Funktionen
Untervektorraum von Funktionen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untervektorraum von Funktionen: Hilfestellung zum Beweis, Tipp
Status: (Frage) beantwortet Status 
Datum: 18:16 Di 09.12.2008
Autor: dawn1987

Aufgabe
Sei K ein Körper und V der K-Vektorraum K hoch IN. Zeigen Sie, dass die Menge
U = {f [mm] \in [/mm] V | [mm] \exists [/mm] n [mm] \in [/mm] IN : f eingeschränkt auf IN \ {0,...,n} =0}
ein Untervektorraum von V ist.

Dabei ist K hoch IN die Menge der Abbildungen von IN nach K und f eingeschränkt auf IN [mm] \{0,...,n} [/mm] bedeutet, dass f(k) = 0 gilt für alle
k > n.

Hab hier ein Problem, ich weiß, dass ich die Untervektorraumaxiome überprüfen muss, nämlich:
                - 0 [mm] \in [/mm] U
                - a+b [mm] \in [/mm] U
                - [mm] \lambda \* [/mm] a [mm] \in [/mm] U
Aber in dieser Aufgabe verwirt mich das f eingeschränkt auf IN \ {0,...,n}

Ich habe diese Frage in keinem anderem Forum gestellt.

        
Bezug
Untervektorraum von Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:23 Di 09.12.2008
Autor: Dath

Nur so eine Frage: [mm]f\not=0, \forall n\in\{0;1;2;...;n\}\subset \IN[/mm]?

Bezug
        
Bezug
Untervektorraum von Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:52 Di 09.12.2008
Autor: angela.h.b.

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

> Sei K ein Körper und V der K-Vektorraum K hoch IN. Zeigen
> Sie, dass die Menge
>  U = {f [mm]\in[/mm] V | [mm]\exists[/mm] n [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

IN : f eingeschränkt auf IN \

> {0,...,n} =0}
>  ein Untervektorraum von V ist.
>
> Dabei ist K hoch IN die Menge der Abbildungen von IN nach K
> und f eingeschränkt auf IN [mm]\{0,...,n}[/mm] bedeutet, dass f(k) =
> 0 gilt für alle
>  k > n.

>  Hab hier ein Problem, ich weiß, dass ich die
> Untervektorraumaxiome überprüfen muss, nämlich:
> - 0 [mm]\in[/mm] U
>                  - a+b [mm]\in[/mm] U
>                  - [mm]\lambda \*[/mm] a [mm]\in[/mm] U
>  Aber in dieser Aufgabe verwirt mich das f eingeschränkt
> auf IN \ {0,...,n}

Hallo,

in Deinem Vektorraum sind Funktionen, die den Definitionsbereich [mm] \IN [/mm] haben und in den Körper K abbilden.

Es sind aber nciht alle dieser Funktionen darin enthalten, sondern nur die, für die f(0), f(1), f(2), ..., f(n) allesamt =0 sind.

Die Funktionswerte für größere zahlen sind völlig frei.

> - 0 [mm]\in[/mm] U

Das neutrale Element in [mm] K^{\IN} [/mm] ist die Funktion, die sämtliche natürliche Zahlen auf  die 0 abbildet. Ist diese Funktion auch in U?

>                  - a+b [mm]\in[/mm] U

Wenn Du zwei Funktionen f und g, die für 0 bis n den Funktionswert 0 haben, addierst, hat dann die Funktion f+g bei irgendeiner zahl, die [mm] \le [/mm] n ist, einen Funktionswert, der von 0 verschieden ist?

>                  - [mm]\lambda \*[/mm] a [mm]\in[/mm] U

Ähnlich wie bei der Addition.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de