www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Urbild(er) einer Funktion
Urbild(er) einer Funktion < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Urbild(er) einer Funktion: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 16:32 Sa 31.12.2011
Autor: Jack159

Aufgabe
Für f: $ [mm] X\to [/mm] $ Y und $ [mm] M\subset [/mm] $ Y sei definiert: $ [mm] f^-1(M):=\{x\in X | f(x) \in M \}, [/mm] $ die Menge der Urbilder zu M. Berechnen Sie:

f^-1({(2, 3)}) für $ f:  [mm] $\IR^2 \to \IR^2 [/mm] definiert durch f((x, y))=(|x-y|, |2x-y|)

Zusatz:
Was ist für die Funktion allgemein f^-1({(0, a)}) in Abhängigkeit von a [mm] \in \IR [/mm] ?



Hallo,

Die Vorgehensweise wäre ja bei einer Funktion mit nur 1 Parameter, dass man f(x)=y setzt (wobei y als konkrete Zahl vorgegebn ist), und man dann nach x auflöst. Damit hat man dann die Urbildmenge berechnet, was ja das Ziel dieser Aufgabe ist.

Bei dieser Aufgabe kommt aber eine Funktion mit 2 Parametern im 2D-Raum vor.
Was mich aber grad richtig verwirrt, ist die Funktion f((x, y))=(|x-y|, |2x-y|)
In der Funktionsgleichung steht ein Komma O.o ?

Meine erste Idee wäre erstmal f((x, y))={(2, 3)} zu setzen.
Somit gilt:
{(2, 3)}=(|x-y|, |2x-y|)

Jetzt würde ich das ganze etwas aufteilen:
2=|x-y|
3=|2x-y|

Somit haben wir nun zwei Gleichungen mit 2 Unbekannten, was lösbar ist. x und y wären nun berechenbar.
Wäre das dann auch der nächste richtige Schritt? Ist bis hierhin alles richtig gedacht, oder liege ich völlig daneben?

        
Bezug
Urbild(er) einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:29 Sa 31.12.2011
Autor: fred97


> Für f: [mm]X\to[/mm] Y und [mm]M\subset[/mm] Y sei definiert:
> [mm]f^-1(M):=\{x\in X | f(x) \in M \},[/mm] die Menge der Urbilder
> zu M. Berechnen Sie:
>  
> f^-1({(2, 3)}) für [mm]f: [/mm][mm] \IR^2 \to \IR^2[/mm] definiert durch
> f((x, y))=(|x-y|, |2x-y|)
>  
> Zusatz:
>  Was ist für die Funktion allgemein f^-1({(0, a)}) in
> Abhängigkeit von a [mm]\in \IR[/mm] ?
>  
>
> Hallo,
>  
> Die Vorgehensweise wäre ja bei einer Funktion mit nur 1
> Parameter, dass man f(x)=y setzt (wobei y als konkrete Zahl
> vorgegebn ist), und man dann nach x auflöst. Damit hat man
> dann die Urbildmenge berechnet, was ja das Ziel dieser
> Aufgabe ist.
>  
> Bei dieser Aufgabe kommt aber eine Funktion mit 2
> Parametern im 2D-Raum vor.
>  Was mich aber grad richtig verwirrt, ist die Funktion
> f((x, y))=(|x-y|, |2x-y|)
>  In der Funktionsgleichung steht ein Komma O.o ?
>  
> Meine erste Idee wäre erstmal f((x, y))={(2, 3)} zu
> setzen.
>  Somit gilt:
>  {(2, 3)}=(|x-y|, |2x-y|)
>  
> Jetzt würde ich das ganze etwas aufteilen:
>  2=|x-y|
>  3=|2x-y|
>  
> Somit haben wir nun zwei Gleichungen mit 2 Unbekannten, was
> lösbar ist. x und y wären nun berechenbar.
> Wäre das dann auch der nächste richtige Schritt? Ist bis
> hierhin alles richtig gedacht,


Ja

> oder liege ich völlig
> daneben?

Nein

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de