www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Urbild von Normalteiler
Urbild von Normalteiler < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Urbild von Normalteiler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:09 Fr 05.08.2011
Autor: phychem

Hallo

Ich bin gerade ein paar Skripte durchgegangen und dabei auf folgenden Satz gestossen:

Urbilder von Normalteilern unter Homomorphismen sind wieder Normalteiler.

Dass Bilder und Urbilder von Untergruppen wieder Untergruppen sind und dass das Bild eines Normalteilers nur dann mit Sicherheit wieder Normalteiler ist, wenn es sich um eine Surjektion handelt, ist mir klar. Aber diesen Satz kann ich nicht nachvollziehen.

Ich hab jetzt das Internet nach Antworten durchsucht und bin dabei auf etliche andere Skripte, Bücher und Mitschriften gestossen, in denen sich dieser Satz finden lässt. Leider wird er nirgends bewiesen. Nur in diesem Matheraum-Thread

Klick

hat jemand einen Beweis angegeben. Meiner Meinung nach ist dieser aber falsch, denn der Autor geht ohne ersichtlichen Grund davon aus, dass N vollständig in der Bildmenge liegt.

Ist es nicht so, dass das Urbild eines Normalteilers nur dann mit Sicherheit wieder normal ist, wenn der Normalteiler vollständig in der Bildmenge liegt bzw. der Gruppenhomorphismus surjektiv ist?

Dies wäre die genau gleiche Bedingung wie die, die an die Bilder von Normalteilern gestellt wird...

Ist der genannte Satz falsch oder mach ich einfach einen Überlegungsfehler?



        
Bezug
Urbild von Normalteiler: Antwort
Status: (Antwort) fertig Status 
Datum: 15:14 Fr 05.08.2011
Autor: felixf

Moin,

> Ich bin gerade ein paar Skripte durchgegangen und dabei auf
> folgenden Satz gestossen:
>  
> Urbilder von Normalteilern unter Homomorphismen sind wieder
> Normalteiler.
>  
> Dass Bilder und Urbilder von Untergruppen wieder
> Untergruppen sind und dass das Bild eines Normalteilers nur
> dann mit Sicherheit wieder Normalteiler ist, wenn es sich
> um eine Surjektion handelt, ist mir klar. Aber diesen Satz
> kann ich nicht nachvollziehen.
>  
> Ich hab jetzt das Internet nach Antworten durchsucht und
> bin dabei auf etliche andere Skripte, Bücher und
> Mitschriften gestossen, in denen sich dieser Satz finden
> lässt. Leider wird er nirgends bewiesen. Nur in diesem
> Matheraum-Thread
>  
> Klick
>  
> hat jemand einen Beweis angegeben. Meiner Meinung nach ist
> dieser aber falsch, denn der Autor geht ohne ersichtlichen
> Grund davon aus, dass N vollständig in der Bildmenge
> liegt.

Ja, da hast du Recht. Das laesst sich aber wie folgt korrigieren:

Sei $g [mm] \in [/mm] G$ und $n [mm] \in [/mm] N' := [mm] \varphi^{-1}(N)$. [/mm] Dann ist [mm] $\varphi(g [/mm] n [mm] g^{-1}) [/mm] = [mm] \varphi(g) \varphi(n) \varphi(g)^{-1} \in [/mm] N$, da [mm] $\varphi(n) \in [/mm] N$ ist und $N$ ein Normalteiler ist. Das bedeutet aber, dass $g n [mm] g^{-1} \in \varphi^{-1}(N) [/mm] = N'$ ist.

> Ist es nicht so, dass das Urbild eines Normalteilers nur
> dann mit Sicherheit wieder normal ist, wenn der
> Normalteiler vollständig in der Bildmenge liegt bzw. der
> Gruppenhomorphismus surjektiv ist?

Nein.

LG Felix


Bezug
                
Bezug
Urbild von Normalteiler: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:39 Fr 05.08.2011
Autor: phychem

Achja, so einfach wäre das gewesen...

Danke für die Hilfe. Nun hab ich das auch verstanden.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de