www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathematik-Wettbewerbe" - Urne mit Kugeln
Urne mit Kugeln < Wettbewerbe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Urne mit Kugeln: Übungsaufgabe
Status: (Übungsaufgabe) Übungsaufgabe Status 
Datum: 10:41 Fr 27.08.2004
Autor: Stefan

Mal eine Wettbewerbsaufgabe, die Kombinatorik und elementare Zahlentherorie verbindet:

In einer Urne liegen $n$ Kugeln, weiße und schwarze. Wir ziehen mit einem Griff zwei Kugeln. Wenn die Wahrscheinlichkeit für das Ereignis "man zieht ein gemischtes Paar" genau [mm] $\frac{1}{2}$ [/mm] ist, was kann man dann über den Inhalt der Urne aussagen?

Viel Spaß!
Stefan

        
Bezug
Urne mit Kugeln: Lösungsansatz
Status: (Frage) beantwortet Status 
Datum: 17:00 Fr 27.08.2004
Autor: KaiAhnung

Hallo.

Ich habe mir folgenden Ansatz überlegt:
Die Anzahl Möglichkeiten aus n Kugeln zwei Kugeln auszuwählen (unabhängig von der Reihenfolge in der man sie zieht) beträgt
[mm]\bruch{n!}{(n-2)!*2!} = \bruch{n*(n-1)}{2}[/mm]
Die Anzahl der Fälle in denen man ein gemischtes Paar ziehen würde beträgt (wieder unabhängig von der Reihenfolge in der man die 2 jeweiligen Kugeln zieht):
[mm]w*s[/mm]
w = Anzahl d. weissen Kugeln
s = Anzahl d. schwarzen Kugeln
[mm]n = w+s[/mm]
Die Wahrscheinlichkeit ein gemischtes Paar zu ziehen ist somit:
[mm]\bruch{2ws}{(w+s)*(w+s-1)}[/mm]
Es muss also gelten
[mm]\bruch{2ws}{(w+s)*(w+s-1)} = \bruch{1}{2}[/mm]
[mm]4ws = w^2+2ws+s^2-w-s[/mm]
[mm]w^2-w*(2s+1)+s*(s-1) = 0[/mm]
[mm]w = s + \bruch{1}{2} \pm \wurzel{\bruch{4s^2+4s+1}{4}-s^2+s}[/mm]
[mm]w = s + \bruch{1}{2} \pm \bruch{\wurzel{8s+1}}{2}[/mm]
Jetzt müsste man noch zeigen wann 8s+1 eine Quadratzahl ist...

MfG
Jan

Bezug
                
Bezug
Urne mit Kugeln: Lösungsansatz
Status: (Antwort) fertig Status 
Datum: 18:43 Fr 27.08.2004
Autor: Stefan

Lieber Kai!

Wieder hervorragend, was du hier veranstaltest. :-) Ja, Brigitte, ich weiß: Ein Hesse eben. ;-) (Schreibe ich, weil sie gerade online ist und weil sie mir letzte Woche die ganze Zeit von den tollen Olympia-Hessen vorgeschwärmt hat. Immer dieser Lokalpatriotismus... ;-))

> Ich habe mir folgenden Ansatz überlegt:
>  Die Anzahl Möglichkeiten aus n Kugeln zwei Kugeln
> auszuwählen (unabhängig von der Reihenfolge in der man sie
> zieht) beträgt
>  [mm]\bruch{n!}{(n-2)!*2!} = \bruch{n*(n-1)}{2}[/mm]
>  Die Anzahl
> der Fälle in denen man ein gemischtes Paar ziehen würde
> beträgt (wieder unabhängig von der Reihenfolge in der man
> die 2 jeweiligen Kugeln zieht):
>  [mm]w*s[/mm]
>  w = Anzahl d. weissen Kugeln
>  s = Anzahl d. schwarzen Kugeln
>  [mm]n = w+s[/mm]
>  Die Wahrscheinlichkeit ein gemischtes Paar zu
> ziehen ist somit:
>  [mm]\bruch{2ws}{(w+s)*(w+s-1)}[/mm]
>  Es muss also gelten
>  [mm]\bruch{2ws}{(w+s)*(w+s-1)} = \bruch{1}{2}[/mm]

Wirklich perfekt. :-)

>  [mm]4ws = w^2+2ws+s^2-w-s[/mm]
>  
> [mm]w^2-w*(2s+1)+s*(s-1) = 0[/mm]
>  [mm]w = s + \bruch{1}{2} \pm \wurzel{\bruch{4s^2+4s+1}{4}-s^2+s}[/mm]
>  
> [mm]w = s + \bruch{1}{2} \pm \bruch{\wurzel{8s+1}}{2}[/mm]
>  Jetzt
> müsste man noch zeigen wann 8s+1 eine Quadratzahl ist...

Gut, das wäre jetzt auch ein Ergebnis: $8s+1$ muss eine Quadratzahl sein. Ich habe nur ein schöneres Ergebnis und versuche das gerade mit deinem in Einklang zu bringen, was mir derzeit noch nicht gelingt. Ich habe bei dir aber keinen Fehler gefunden. Hmm...

Eigentlich sollst du nämlich eine Aussage über $n$ treffen (auch wenn das in der Aufgabenstellung zugegebenermaßen nicht deutlich wird). ;-)

Liebe Grüße
Stefan


Bezug
                        
Bezug
Urne mit Kugeln: Lösungsansatz
Status: (Frage) beantwortet Status 
Datum: 21:45 Fr 27.08.2004
Autor: KaiAhnung

Hallo Stefan.

Ich habe da noch etwas herausgefunden:
[mm]8s+1[/mm] ist für alle [mm]s = \bruch{z*(z+1)}{2}[/mm]
eine Quadratzahl da
[mm]4z^2+4z+1 = (2z+1)^2[/mm]
Mit 8s+1 lässt sich also das Quadrat jeder ungeraden Zahl darstellen.

[mm]w = s + \bruch{1}{2} \pm \bruch{\wurzel{8s+1}}{2}[/mm]
[mm]w = \bruch{z^2+3z+2}{2}[/mm]
bzw.
[mm]w = \bruch{z^2-z}{2}[/mm]
je nachdem ob man addiert oder subtrahiert.

Der zweite Fall ist allerdings etwas ungünstig, da das Ergebnis mit z=1 (bzw. s=1) keinen Sinn ergibt (Im zweiten Fall geht man davon aus, dass es mehr Schwarze Kugeln gibt).

[mm]n = w + s = \bruch{2z^2+4z+2}{2} = \bruch{2*(z+1)^2}{2} = (z+1)^2[/mm]
n kann also den Wert jeder Quadratzahl (bis auf [mm]1^2=1[/mm]) annehmen.
[mm]w = \bruch{z^2+3z+2}{2} = \bruch{(z+1)(z+2)}{2}[/mm]
[mm]s = \bruch{z*(z+1)}{2}[/mm]
Oder eben umgekehrt:
[mm]s = \bruch{z^2+3z+2}{2} = \bruch{(z+1)(z+2)}{2}[/mm]
[mm]w = \bruch{z*(z+1)}{2}[/mm]

MfG
Jan

Bezug
                                
Bezug
Urne mit Kugeln: Lösungsansatz
Status: (Antwort) fertig Status 
Datum: 03:14 Sa 28.08.2004
Autor: Stefan

Lieber Jan!

Sehr, sehr schön! :-)

Ich hatte auch raus, dass $n$ eine Quadratzahl sein muss, konnte es aber ausgehend von deiner Rechnung nicht zeigen. (Ich habe die Tasache, dass $n$ eine Quadratzahl sein muss, ähnlich, aber eben nicht genau gleich, gezeigt.) Dir ist das aber sehr gut gelungen, das auch ausgehend von deinem Ergebnis zu zeigen.

Dafür allerhöchsten [respekt2]!!

Wirklich, ich bin echt beeindruckt. :-) Und finde es echt super, dass wir jetzt so viele begabte junge Mathematiker im Forum haben. Allein dafür hat sich das Wettbewerbs-Forum schon gelohnt. :-)

Beantworte doch mal ein paar Fragen von Hilfsbedürftigen im Forum, damit ich dich für unser Projektteam vorschlagen kann. :-)

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de