Urnenbeispiel < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Eine Urne enthält a weiße und b schwarze Kugeln. Es werden c Kugeln mit Zurücklegen aus der Urne gezogen. Berechnen Sie den Erwartungswert der Anzahl der gezogenen schwarzen Kugeln. |
Ich habe mir einmal die Wahrscheinlichkeit von der allgemeinen Formel ausgedrückt:
P(X=c) = [mm] {a+b\choose c} (\bruch{b}{a+b})^c [/mm] (1 - [mm] \bruch{b}{a+b})^{a+b-c}
[/mm]
Nur wie erechne ich daraus den Erwartungswert?
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 01:44 Fr 23.11.2007 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|