www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Urnenmodell
Urnenmodell < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Urnenmodell: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:43 Mo 14.11.2005
Autor: Kyrill

Hi!

Gegeben sei eine Urne mit r roten und s schwarzen Kugeln. Die Kugeln seien von 1 bis r+s
durchnummeriert, wobei die Nummern von 1 bis r die roten Kugeln und die Nummern von
r + 1 bis r + s die schwarzen Kugeln bezeichnen.
a) Aus der Urne werden n Kugeln mit Zurücklegen gezogen. Der Ergebnisraum "Groß Omega" sei
gegeben durch

"Groß Omega" =  [mm] \{w_{1},...,w_{n}: w_{i} \in \{1,...,r+s \}, 1 \le i \le n \} [/mm] =  [mm] \{1,...r+s \}^n. [/mm]

Die Zufallsgröße X bezeichne die Anzahl der gezogenen roten Kugeln.
b) Aus der Urne werden n Kugeln ohne Zurücklegen gezogen. Der Ergebnisraum sei in diesem Fall gegeben durch:

"Groß Omega" =  [mm] \{w_{1},...,w_{n}: w_{i} \in \{1,...,r+s \}, 1 \le i \le n, w_{i} \not= w_{j} für i \not=j \not=\}^n. [/mm]

Es bezeichne wieder X die Anzahl der gezogenen roten Kugeln.
Berechnen Sie in beiden Fällen die Verteilung von X.
(Wichtig: Die Lösung lässt sich nicht aus der Vorlesung übernehmen, da hier ein anderer
Ergebnisraum zu Grunde liegt!)

Wie kann ich an so eine Aufgasbe herangehen? Es würden mir auch nur Tipps reichen, gegen Lösungen habe ich natürlich nichts einzuwenden ;)



        
Bezug
Urnenmodell: Antwort
Status: (Antwort) fertig Status 
Datum: 17:05 Fr 18.11.2005
Autor: Astrid

Hallo Kyrill,

Zuerst einmal: Lies dir genau durch, wie ihr die Aufgaben in der Vorlesung gelöst habt, hier mußt du sicherlich ganz ähnlich rangehen.

Gesucht ist die Verteilung von $X$, also:
[mm] $P(\{X=k\}$. [/mm]

Bei beiden Teilaufgaben mußt du dir überlegen, wieviele Möglichkeiten es insgesamt gibt, $n$ Kugeln aus einer Urne mit $r+s$ Kugeln zu ziehen (Anzahl der möglichen Ergebnisse) - jeweils mit bzw. ohne Wiederholung. Dann überlege, wieviele Möglichkeiten es gibt, genau $k$ rote Kugeln und $n-k$ schwarze aus der Urne zu ziehen (Anzahl der erfolgreichen Ergebnisse). Um nun die Wahrscheinlichkeit zu berechnen, teilst du einfach die Anzahl der erfolgreichen Ergebnisse durch die Anzahl der möglichen Ergebisse.

Zum Beispiel bei b)
Wie viele verschiedene Möglichkeiten gibt es, $n$ Kugeln aus einer Urne mit $r+s$ Kugeln zu ziehen?
Das ist eine Kombination (d.h. ohne Berücksichtigung der Reihenfolge) ohne Wiederholung, also gibt es
[mm] \vektor{r+s \\ n} [/mm] Möglichkeiten insgesamt. Das ist also die Anzahl der möglichen Ergebnisse.

Versuche nun selbst, die anderen Werte herauszufinden!

Viele Grüße
Astrid

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de