www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Urnenmodell
Urnenmodell < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Urnenmodell: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:24 Fr 24.03.2006
Autor: gruening

Aufgabe
Anna hat ihrer Mutter beim Backen von Weihnachtsplätzchen geholfen. Sie hat  deshalb von jeder der vier Sorten "M", "S", "B", und "C" je sechs Stück in ihre eigene Büchse legen dürfen.

(a) Anna nimmt mit einem Griff sechs Plätzchen aus ihrer Büchse. Mit welcher Wahrscheinlichkeit sin dies von zwei verschiedenen Sorten je drei Stück?

(b) Anna entnimmt der Büchse nacheinander ein Plätzchen und isst es, bis sie ein "B" erwischt hat.  Mit welcher Wahrscheinlichkeit isst Anna spätestens beim driten Mal ein "B"?

Komme überhaupt nicht auf die Lösung? Jemand von Euch?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Urnenmodell: Antwort
Status: (Antwort) fertig Status 
Datum: 10:46 Fr 24.03.2006
Autor: mathiash

Hallo und guten Tag,

Wir haben [mm] 4\cdot [/mm] 6=24 Plätzchen  [mm] m_1\ldots m_6. s_1\ldots s_6,\ldots [/mm] , [mm] c_1,\ldots c_6. [/mm]

Wir nehmen an, dass bei jedem Griff gleichverteilt eines der in der Dose befindlichen Plätzchen
gezogen wird. Dann wird bei (a) also eine sechselementige Teilmenge der Plätzchenmenge [mm] \{m_1,\ldots , c_6\} [/mm]
gezogen.

Es gibt   [mm] {24\choose 6} [/mm] sechselementige Teilmengen, jede wird mit gleicher Wahrscheinlichkeit gezogen.

Wieviele davon haben die Eigenschaft, von zwei Sorten je drei Plätzchen zu enthalten ?

Für zwei feste Sorten sind dies genau   [mm] {6\choose 3}\cdot {6\choose 3} [/mm] .

Da es [mm] {4\choose 2} [/mm] Zweiermengen von Sorten gibt, ist die Zahl also

[mm] {4\choose 2} \cdot {6\choose 3}\cdot {6\choose 3}, [/mm]

und die Wahrscheinlichkeit ist

[mm] \frac{{4\choose 2} \cdot {6\choose 3}\cdot {6\choose 3}}{ {24\choose 6}} [/mm]

Das muss man dann nur noch schön ausrechnen.

Zu (b):

Was ist da denn das ''G'' ?  Könntest Du diese Aufgabenstellung bitte nochmal überarbeiten bzw. erläutern ?

Gruss,

Mathias

Bezug
                
Bezug
Urnenmodell: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:18 Fr 24.03.2006
Autor: gruening

Stimmt, dass "G" sollte eigentlich Plätzchen heißen :-) Danke schonmal
für den ersten Teil :-)

Bezug
        
Bezug
Urnenmodell: Antwort
Status: (Antwort) fertig Status 
Datum: 14:48 Fr 24.03.2006
Autor: Fugre

Hallo Gruening,

versuchen wir doch mal die b). Welche Fälle erfüllen denn diese Bedingung?
Wir können entweder schon bei ersten Zug ein $B$ ziehen, diese Wahrscheinlichkeit
ist ja nicht allzu schwer zu berechnen. [mm] $P(1)=\frac{6}{24}=\frac{1}{4}$ [/mm]
Oder beim zweiten Zug, dazu darf beim ersten Zug kein $B$ gezogen worden sein, beim
zweiten dann schon, also: [mm] $P(2)=\frac{18}{24}*\frac{6}{23}$ [/mm]
und nach drei Zügen: [mm] $P(3)=\frac{18}{24}*\frac{17}{23}*\frac{6}{22}$ [/mm]
Die Summe aus diesen Wahrscheinlichkeiten ist dann die gesuchte Wahrscheinlichkeit.

Gruß
Nicolas

Bezug
                
Bezug
Urnenmodell: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:26 Mo 27.03.2006
Autor: gruening

Dankeschön, dass ist einleuchtend!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de