www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Urnenmodell als Markovkette
Urnenmodell als Markovkette < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Urnenmodell als Markovkette: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:34 Do 14.12.2006
Autor: Infinity1982

Aufgabe
Gegeben ist eine Urne mit N [mm] \ge [/mm] 2 Kugeln in den Farben weiß udn schwarz,wobei es von jeder Farbe mindestens eine Kugel gibt. Rein zufällig wird eine Kugel ausgewählt und zusammen mit einer weiteren Kugel der gleichen Farbe aus einem externen Vorrat wieder zurückgelegt, Seien [mm] W_{n} [/mm] und [mm] S_{n} [/mm] jeweils die Anzahl der weißen bzw. schwarzen Kugeln nach n-maliger Durchführung dieses Verfahren.
a) Zeigen Sie, dass [mm] X_{n}:=(W_{n},S_{n}) [/mm] eine Markovkette auf dem Zustandsraum [mm] E={1,2,...}^{2} [/mm] ist. Bestimmen Sie die zugehörige Übergangsmatrix [mm] \Pi. [/mm]
b) Sei [mm] h:=\bruch{w}{w+s} [/mm] der Anteil der weißen Kugeln einer Konfiguration (w,s) [mm] \in [/mm] E. Zeigen Sie, dass für die Funktion h gilt: [mm] \Pi*h=h, [/mm] d.h. [mm] \summe_{y \in E}^{}\Pi(x,y)h(y)=h(x) [/mm] für alle x [mm] \in [/mm] E
c) Zeigen Sie, dass es keine stationäre Startverteilung [mm] \alpha [/mm] für diese Markovkette gibt.

Hallo Leute!
Bei dieser Aufgabe habe ich nicht ganz den Durchblick und weiß auch nicht, wie sie ansetzen soll.:-(
a) E ist der Zustandsraum und abzählbar, aber nicht endlich. Ich habe versucht, den Zustandsgraph aufzumalen, komm aber irgendwie auf keinen grünen Zweig, weil ja je nachdem,ob ich eine weiße oder schwarze Kugel gezogen habe, erhöht sich nach jedem Zug die Gesamtzahl der jeweiligen Farbe um 1. D.h. nach jedem Schritt erhöht sich immer weiß oder schwarz um 1. Wie schreibe ich dazu die Übergangsmatrix auf? [mm] \Pi [/mm] müsste einen nxn-Matrix sein, deren Zeilen jeweils immer Summe 1 haben.
b) Wenn man [mm] \Pi [/mm] schon mal hat, könnte man die b) ja auch ausrechnen...
c) Es gilt für die stationäre Verteilung [mm] \alpha: [/mm]
  
[mm] \limes_{n\rightarrow\infty}\pi^{n}(x,y)=:\alpha(y). [/mm] Diese existiert nach dem Ergodensatz nur dann, wenn E endlich ist. Hier ist E nicht endlich, und es müsste ein k [mm] \ge [/mm] 1 geben mit [mm] \pi^{k}(x,y)>0. [/mm]
Man soll hier beispielsweise die Anzahl aller Kugeln in jedem Schritt betrachten. Nach einem Zug erhöht sich die Gesamtzahl der Kugeln der jeweils gezogenen Kugel um 1.
Als Tipp habe ich bekommen, dass man die Menge [mm] A_{n}:= [/mm] {(w+s) [mm] \in [/mm] E:w+s=n} betrachten soll.
Kann mir bitte jemand helfen,und mir sagen, welche Überlegungen man sich hier machen muss, und als Modell aufschreiben kann? Wie kommt man hier insbesondere auf diese Matrix?
DANKE!
Infinity

        
Bezug
Urnenmodell als Markovkette: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Do 21.12.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de