www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Urnenwettkampf
Urnenwettkampf < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Urnenwettkampf: Korrektur
Status: (Frage) beantwortet Status 
Datum: 22:02 Mi 04.01.2012
Autor: wieschoo

Hi,

Ich glaube ich verrenne mich irgendwie. Desweiteren habe ich auch Probleme beim aufschreiben. Also bitte alles mit Vorsicht genießen.

Problem:
Es sind 2 Urnen vorhanden Urne A und Urne B. Beide Urnen beinhalten jeweils n Kugel.


Spieler SA führt n-mal folgendes durch:
Er zieht mit Wkeit p im i-ten Schritt eine Kugel aus der Urne und legt sie weg. Mit Wkeit (1-p) nimmt er keine Kugel.

Spieler SB macht das n-mal analog mit seiner eigenen Urne:
Er zieht wieder mit Wkeit p im i-ten Schritt eine Kugel aus der Urne und legt sie weg. Mit Wkeit (1-p) nimmt er keine Kugel.

Wie groß ist die Wkeit, dass Spieler SA weniger Kugel gezogen hat als Spieler SB?

Das Ziehen der Kugel kann ich ja schreiben als
[mm]F_i=\begin{cases} 1 ,& p\\ 0,&(1-p)\end{cases}[/mm]  
und damit hat Spieler SA nach n Zügen [mm]S_n:=\sum_{i=1}^nF_i[/mm] Kugel genommen.
Spieler SB hat auch nach n Zügen [mm]S_n:=\sum_{i=1}^nF_i[/mm] Kugel genommen.

Die gesuchte Wkeit ist ja soetwas wie
[mm]P(S_n(SA) [mm]=1-\sum_{a=0}^n\sum_{k=0}^aP(S_n(SB)=k)[/mm]
[mm]=1-\sum_{a=0}^n\sum_{k=0}^a\binom nk p^k(1-p)^{n-k}=:g(n,p)[/mm]

Allerdings ist [mm]g(1,\frac{1}{2})=2[/mm]. Das ist also in keinem Fall ne Wkeit. Da muss also ein ganz grober Schnitzer drin sein.

Die Frage stellt sich ja, ob [mm]\red{=}[/mm] wirklich gilt.

        
Bezug
Urnenwettkampf: Antwort
Status: (Antwort) fertig Status 
Datum: 08:40 Do 05.01.2012
Autor: Al-Chwarizmi


> Hi,
>  
> Ich glaube ich verrenne mich irgendwie. Desweiteren habe
> ich auch Probleme beim aufschreiben. Also bitte alles mit
> Vorsicht genießen.
>  
> Problem:
>  Es sind 2 Urnen vorhanden Urne A und Urne B. Beide Urnen
> beinhalten jeweils n Kugel.

... man könnte auch sagen:  sie enthalten je n Kugeln  ;-)

> Spieler SA führt n-mal folgendes durch:
> Er zieht mit Wkeit p im i-ten Schritt eine Kugel aus der
> Urne und legt sie weg. Mit Wkeit (1-p) nimmt er keine
> Kugel.
>  
> Spieler SB macht das n-mal analog mit seiner eigenen Urne:
> Er zieht wieder mit Wkeit p im i-ten Schritt eine Kugel
> aus der Urne und legt sie weg. Mit Wkeit (1-p) nimmt er
> keine Kugel.
>  
> Wie groß ist die Wkeit, dass Spieler SA weniger Kugeln
> gezogen hat als Spieler SB?
>  
> Das Ziehen der Kugel kann ich ja schreiben als
>  [mm]F_i=\begin{cases} 1 ,& p\\ 0,&(1-p)\end{cases}[/mm]  
> und damit hat Spieler SA nach n Zügen [mm]S_n:=\sum_{i=1}^nF_i[/mm]
> Kugel genommen.
>  Spieler SB hat auch nach n Zügen [mm]S_n:=\sum_{i=1}^nF_i[/mm]
> Kugel genommen.
>  
> Die gesuchte Wkeit ist ja soetwas wie
>  [mm]P(S_n(SA)
>  
> [mm]=1-\sum_{a=0}^n\sum_{k=0}^aP(S_n(SB)=k)[/mm]
>  [mm]=1-\sum_{a=0}^n\sum_{k=0}^a\binom nk p^k(1-p)^{n-k}=:g(n,p)[/mm]
>  
> Allerdings ist [mm]g(1,\frac{1}{2})=2[/mm]. Das ist also in keinem
> Fall ne Wkeit. Da muss also ein ganz grober Schnitzer drin
> sein.
>  
> Die Frage stellt sich ja, ob [mm]\red{=}[/mm] wirklich gilt.  


Guten Tag wieschoo !

Ich würde mir das so zurechtlegen:
Jeder der beiden Spieler macht ja mit seiner Urne
genau dasselbe Spiel, also haben wir eine total
symmetrische Situation, und es muss gelten

     $\ [mm] P(a_n
Dabei seien [mm] a_n [/mm] und [mm] b_n [/mm] die Anzahlen der von SA bzw. SB
in n Schritten insgesamt gezogenen Kugeln. Um [mm] P(a_n zu berechnen, würde ich mich also zunächst um die Wahr-
scheinlichkeit

    $\ [mm] P(a_n=b_n)\ [/mm] =\ [mm] \summe_{k=0}^{n}P(a_n=b_n=k)$ [/mm]

kümmern. Und nun ist

    $\ [mm] P(a_n=b_n=k)\ [/mm] =\ [mm] P(a_n=k\ \wedge\ b_n=k)\ [/mm] =\ [mm] P(a_n=k)\ [/mm] *\ P( [mm] b_n=k)$ [/mm]

(Unabhängigkeit)

wobei   $\ [mm] P(a_n=k)\ [/mm] =\ P( [mm] b_n=k)\ [/mm] =\ [mm] \pmat{n\\k}*p^{k}*(1-p)^{n-k}$ [/mm]

(Binomialverteilung)

Jetzt einfach noch einsetzen und vereinfachen.

LG   Al





Bezug
                
Bezug
Urnenwettkampf: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:34 Do 05.01.2012
Autor: wieschoo

Danke dir. Warum denke ich immer um [mm] $\pi^2$ [/mm] Ecken mehr als man muss?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de