www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Versicherungsmathematik" - Value at Risk log-normalvert.
Value at Risk log-normalvert. < Versicherungsmat < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Versicherungsmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Value at Risk log-normalvert.: Beweis der Formel
Status: (Frage) beantwortet Status 
Datum: 18:07 Do 03.01.2013
Autor: meg

Aufgabe
Es sei $ X $ eine log-normalverteilte Zufallsvariable $ X $ mit Erwartungswert $ [mm] \mu \in \mathbb{R} [/mm] $, Varianz $ [mm] \sigma [/mm] ^2 > 0 $ und es sei ein $ [mm] \alpha \in [/mm] (0,1) $. Beweisen Sie, dass Folgendes gilt:
[mm] \[ VaR_{ \alpha}(X)= e^{ \mu + \Phi^{-1}( \alpha) \sigma} \] [/mm]
wobei $ [mm] \Phi [/mm] $ die Standard-Normalverteilungsfunktion ist und $ [mm] \Phi^{-1} [/mm] ( [mm] \alpha) [/mm] $ das $ [mm] \alpha$-Quantil [/mm] von $ [mm] \Phi [/mm] $.


Aus X $ [mm] \sim \mathcal{L} \mathcal{N}( \mu [/mm] , [mm] \sigma^2 [/mm] ) $  folgt $ lnX [mm] \sim \mathcal{N}( \mu, \sigma [/mm] ^2) $.

VaR unter Normalverteilungsannahme beträgt: [mm] \\ [/mm]

$ [mm] VaR_{ \alpha}(X)= \mu [/mm] + [mm] \sigma \Phi^{-1} [/mm] ( [mm] \alpha) \quad \Rightarrow \quad [/mm] VaR(lnX) = [mm] \mu [/mm] + [mm] \sigma \Phi^{-1} [/mm] ( [mm] \alpha) \quad \Rightarrow \quad e^{VaR(lnX)} [/mm] = [mm] e^{ \mu + \sigma \Phi^{-1} ( \alpha) }$ \\ [/mm]

Wegen [mm] $e^{lnX} [/mm] = X$ gilt [mm] $e^{VaR(lnX)} [/mm] = [mm] VaR_{ \alpha }(X)$ \\ [/mm]

$ [mm] \Rightarrow VaR_{ \alpha }(X) [/mm] = [mm] e^{\mu + \sigma \Phi^{-1} ( \alpha)} [/mm] $


Ist mein Beweis so ok ??



        
Bezug
Value at Risk log-normalvert.: Antwort
Status: (Antwort) fertig Status 
Datum: 11:47 Fr 04.01.2013
Autor: wieschoo


> Es sei [mm]X[/mm] eine log-normalverteilte Zufallsvariable [mm]X[/mm] mit
> Erwartungswert [mm]\mu \in \mathbb{R} [/mm], Varianz [mm]\sigma ^2 > 0[/mm]
> und es sei ein [mm]\alpha \in (0,1) [/mm]. Beweisen Sie, dass
> Folgendes gilt:
> [mm]\[ VaR_{ \alpha}(X)= e^{ \mu + \Phi^{-1}( \alpha) \sigma} \][/mm]
>  
> wobei [mm]\Phi[/mm] die Standard-Normalverteilungsfunktion ist und
> [mm]\Phi^{-1} ( \alpha)[/mm] das [mm]\alpha[/mm]-Quantil von [mm]\Phi [/mm].
>  
> Aus X [mm]\sim \mathcal{L} \mathcal{N}( \mu , \sigma^2 )[/mm]  folgt
> [mm]lnX \sim \mathcal{N}( \mu, \sigma ^2) [/mm].
>
> VaR unter Normalverteilungsannahme beträgt: [mm]\\ [/mm]
>  
> [mm]\red{VaR_{ \alpha}(X)= \mu + \sigma \Phi^{-1} ( \alpha) \quad \Rightarrow \quad VaR(lnX) = \mu + \sigma \Phi^{-1} ( \alpha)} \quad \Rightarrow \quad e^{VaR(lnX)} = e^{ \mu + \sigma \Phi^{-1} ( \alpha) }[/mm]

Der rote Ausdruck kann einfach nicht gelten!

> [mm]\\ [/mm]
>  
> Wegen [mm]e^{lnX} = X[/mm] gilt [mm]e^{VaR(lnX)} = VaR_{ \alpha }(X)[/mm] [mm]\\ [/mm]

Hier machst du es dir zu einfach.
Du weißt nur
[mm]VaR_p(X)=VaR_(e^{\log X})[/mm]
Niemand sagt, dass man da die Exponentialfunktion einfach herausziehen kann.

>  
> [mm]\Rightarrow VaR_{ \alpha }(X) = e^{\mu + \sigma \Phi^{-1} ( \alpha)}[/mm]
>  
>
> Ist mein Beweis so ok ??

Das ist ein Bezeichnungswirrwarr.

Sei [mm]X\sim \mathcal{LN}(\mu,\sigma^2)[/mm], dann ist [mm]Y:=\log X \sim \mathcal{N}(\mu,\sigma^2)[/mm]. Damit gilt für Y:

                [mm]VaR_{ \alpha}(\log X)=VaR_{ \alpha}(Y)= { \mu + \Phi^{-1}( \alpha) \sigma} [/mm]

...

Ich würde aber komplett anders anfangen:
Sei [mm] $X\sim \mathcal{LN}(\mu,\sigma^2)$. [/mm] Dann gilt
[mm] $P(X\leq x_{1-p})=\ldots$ [/mm]
und das nach [mm] $x_{1-p}$ [/mm] auflösen.





Bezug
                
Bezug
Value at Risk log-normalvert.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:44 Fr 04.01.2013
Autor: meg

Hallo, erstmal danke für deinen Beitrag.

Ich versuche dann nach $ [mm] x_{p} [/mm] $ aufzulösen.

$X [mm] \sim \mathcal{LN}( \mu, \sigma [/mm] ^2)$

[mm] $P(X\leq \Phi [/mm] ^{-1}( [mm] \alpha))= [/mm] P(lnX [mm] \leq [/mm]  ln ( [mm] \Phi [/mm] ^{-1}( [mm] \alpha))) [/mm] = [mm] \Phi [/mm] ( [mm] \frac{ln ( \Phi ^{-1}( \alpha))- \mu}{ \sigma}) [/mm] $

$ [mm] \Rightarrow [/mm] VaR(lnX)= [mm] \mu [/mm] + [mm] \sigma \Phi [/mm] ^{-1}( [mm] \alpha) [/mm] $

d.h. $ P(lnX [mm] \leq \mu [/mm] + [mm] \sigma \Phi [/mm] ^{-1}( [mm] \alpha)) [/mm] = [mm] \alpha [/mm] $

$ [mm] \Rightarrow P(e^{lnX} \leq e^{\mu + \sigma \Phi ^{-1}( \alpha)}) [/mm] = [mm] \alpha [/mm] $

$ [mm] \Rightarrow [/mm] P(X [mm] \leq e^{\mu + \sigma \Phi ^{-1}( \alpha)}) [/mm] = [mm] \alpha [/mm] $

$ [mm] \Rightarrow VaR_{\alpha} [/mm] X = [mm] e^{\mu + \sigma \Phi ^{-1}( \alpha)} [/mm] $

Wäre das richtig?


Bzgl. meiner vorherigen Denkweise:
Wirre Bezeichnungen, das stimmt, jetzt erst sehe ich es :-o

Wäre das untere auch falsch und zu einfach, wenn man die Exponentialfunktion nur für $ln X$ bildet ?

$ VaR(lnX) = [mm] \mu [/mm] + [mm] \sigma \Phi^{-1} [/mm] ( [mm] \alpha)$ \\ [/mm]

$ [mm] \Rightarrow {VaR(e^{lnX})} [/mm] = [mm] e^{ \mu + \sigma \Phi^{-1} ( \alpha) }$ \\ [/mm]

$ [mm] \Rightarrow VaR_{ \alpha }(X) [/mm] = [mm] e^{\mu + \sigma \Phi^{-1} ( \alpha)} [/mm] $


VG
meg

Bezug
                        
Bezug
Value at Risk log-normalvert.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 So 06.01.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                                
Bezug
Value at Risk log-normalvert.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:42 So 06.01.2013
Autor: meg

Hallo,

vielleicht findet sich doch jemand, der auf meine Frage eine Antwort findet...


Bezug
                        
Bezug
Value at Risk log-normalvert.: Antwort
Status: (Antwort) fertig Status 
Datum: 19:49 So 06.01.2013
Autor: luis52


> Hallo, erstmal danke für deinen Beitrag.
>  
> Ich versuche dann nach [mm]x_{p}[/mm] aufzulösen.
>  
> [mm]X \sim \mathcal{LN}( \mu, \sigma ^2)[/mm]
>  
> [mm]P(X\leq \Phi ^{-1}( \alpha))= P(lnX \leq ln ( \Phi ^{-1}( \alpha))) = \Phi ( \frac{ln ( \Phi ^{-1}( \alpha))- \mu}{ \sigma})[/mm]
>  
> [mm]\Rightarrow VaR(lnX)= \mu + \sigma \Phi ^{-1}( \alpha)[/mm]
>  
> d.h. [mm]P(lnX \leq \mu + \sigma \Phi ^{-1}( \alpha)) = \alpha[/mm]
>  
> [mm]\Rightarrow P(e^{lnX} \leq e^{\mu + \sigma \Phi ^{-1}( \alpha)}) = \alpha[/mm]
>  
> [mm]\Rightarrow P(X \leq e^{\mu + \sigma \Phi ^{-1}( \alpha)}) = \alpha[/mm]
>  
> [mm]\Rightarrow VaR_{\alpha} X = e^{\mu + \sigma \Phi ^{-1}( \alpha)}[/mm]
>  
>  
> Wäre das richtig?

[ok]


> Wäre das untere auch falsch und zu einfach, wenn man die
> Exponentialfunktion nur für [mm]ln X[/mm] bildet ?
>  
> [mm]VaR(lnX) = \mu + \sigma \Phi^{-1} ( \alpha)[/mm] [mm]\\[/mm]
>  
> [mm]\Rightarrow {VaR(e^{lnX})} = e^{ \mu + \sigma \Phi^{-1} ( \alpha) }[/mm]
> [mm]\\[/mm]
>  
> [mm]\Rightarrow VaR_{ \alpha }(X) = e^{\mu + \sigma \Phi^{-1} ( \alpha)}[/mm]
>  

[ok]

vg Luis

Bezug
                                
Bezug
Value at Risk log-normalvert.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:40 So 06.01.2013
Autor: meg

Huhu, ich bin erleichtert...

Danke Luis! ;-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Versicherungsmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de