www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Determinanten" - Vandermondsche Determinante
Vandermondsche Determinante < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vandermondsche Determinante: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:55 Mo 05.05.2008
Autor: Goldschatz

Aufgabe

für
[mm] V_{2}(x_{0},x_{1},x_{2}):=\vmat{ 1 & x_{0} & x_{0}^{2} \\ 1 & x_{1} & x_{1}^{2} \\1 & x_{2} & x_{2}^{2}} [/mm]
zeige man
[mm] V_{2}(x_{0},x_{1},x_{2})=(x_{1}-x_{0})*(x_{2}-x_{0})*(x_{2}-x_{1}) [/mm]

Guten Morgen!

Muss ganz ehrlich gestehn ich häng schon viel zu lange daran- wirklich schwierig kann es ja nicht sein- gibt nur einen Punkt, aber ich bin grad echt zu dumm das zu zeigen.

Egal wie ich es drehe ich bleib immer bei folgendem Ergebnis hängen:

[mm] x_{2}^{2}*(x_{1}-x_{0})+2*x_{0}*(x_{2}-x_{0})-x_{1}^{2}*(x_{2}-x_{1}) [/mm]

Danke schonmal für eure Hilfe!

Ps Hoffe das mit den Formeln klappt


        
Bezug
Vandermondsche Determinante: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:01 Mo 05.05.2008
Autor: JustSmile

Ich bin mir nicht mehr ganz sicher, aber ich meine, dass im Buch
Lineare Algebra I von Falko Lorenz
deine komplette gesuchte Lösung steht (Kapitel zu Determinanten)! Wies genau geht weiß ich nicht mehr, war nur etwas komplizierter soweit ich weiß.
lg

Bezug
        
Bezug
Vandermondsche Determinante: Antwort
Status: (Antwort) fertig Status 
Datum: 12:18 Mo 05.05.2008
Autor: steppenhahn

[mm]\vmat{ 1 & x_{1} & x_{1}^{2} \\ 1 & x_{2} & x_{2}^{2} \\ 1 & x_{3} & x_{3}^{2} }[/mm]

[mm](-1)*Zeile1 + Zeile2 \to Zeile2[/mm]
[mm](-1)*Zeile1 + Zeile3 \to Zeile3[/mm]
(Determinante ändert sich nicht)

[mm]= \vmat{ 1 & x_{1} & x_{1}^{2} \\ 0 & x_{2} - x_{1} & x_{2}^{2} - x_{1}^{2} \\ 0 & x_{3} - x_{1} & x_{3}^{2} - x_{1}^{2} }[/mm]

Entwickeln nach 1. Spalte:

[mm]= 1*\vmat{x_{2} - x_{1} & x_{2}^{2} - x_{1}^{2} \\ x_{3} - x_{1} & x_{3}^{2} - x_{1}^{2} } + 0*|...| + 0*|...|[/mm]

[mm]= 1*\vmat{x_{2} - x_{1} & (x_{2} - x_{1})*(x_{2} + x_{1}) \\ x_{3} - x_{1} & (x_{3} - x_{1})*(x_{3} + x_{1}) }[/mm]

Determinante für 2x2-Matrizen anwenden:

[mm]=(x_{2}-x_{1})*(x_{3}-x_{1})*(x_{3}+x_{1}) - (x_{3}-x_{1})*(x_{2}-x_{1})*(x_{2}+x_{1})[/mm]

Ausklammern der jeweils beiden ersten, gleichen Faktoren bringt

[mm]=(x_{2}-x_{1})*(x_{3}-x_{1})*\left((x_{3}+x_{1}) - (x_{2}+x_{1})\right)[/mm]

[mm]=(x_{2}-x_{1})*(x_{3}-x_{1})*(x_{3}-x_{2})[/mm].


Bezug
                
Bezug
Vandermondsche Determinante: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:23 Mo 05.05.2008
Autor: Goldschatz

Oh vielen Dank für die schnelle Antwort!

Bezug
        
Bezug
Vandermondsche Determinante: Alternative
Status: (Antwort) fertig Status 
Datum: 12:56 Mo 05.05.2008
Autor: Bastiane

Hallo Goldschatz!

> für
> [mm]V_{2}(x_{0},x_{1},x_{2}):=\vmat{ 1 & x_{0} & x_{0}^{2} \\ 1 & x_{1} & x_{1}^{2} \\1 & x_{2} & x_{2}^{2}}[/mm]
>  
> zeige man
>  
> [mm]V_{2}(x_{0},x_{1},x_{2})=(x_{1}-x_{0})*(x_{2}-x_{0})*(x_{2}-x_{1})[/mm]

Hättest du nicht auch einfach mit der Regel von Sarrus die Determinante berechnen können, und gleichzeitig den zu zeigenden Term ausmultiplizieren, da fällt dann ein Term direkt weg, und der Rest ist genau die Determinante, die man mit Sarrus errechnet. :-)

Viele Grüße
Bastiane
[cap]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de