www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "mathematische Statistik" - Var. Norm.Vert. parameterabh.
Var. Norm.Vert. parameterabh. < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Var. Norm.Vert. parameterabh.: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 04:16 Do 24.07.2014
Autor: Teufel

Hallo!

Erst einmal ein kleines Vorwort: Ich schreibe gerade meine Masterarbeit im Gebiet der Kryptographie. Nun bin ich bei folgendem Problem angelangt:

Gegeben zwei $n$-Bit-Zahlen $a,b$, d.h. [mm] $a=a_n2^n+\ldots+a_12+a_0$ [/mm] und [mm] $b=b_n2^n+\ldots+b_12+b_0$. [/mm] Sei [mm] $w(x)=x_n+\ldots+x_0$ [/mm] die Hamming-Gewichts-Funktion, d.h. sie zählt die Anzahl der Einsen in den binären Darstellung von $x$.

Betrachte nun den diskreten Wahrscheinlichkeitsraum [mm] $\Omega_{n,\delta}=\{(x,y)\in\{0,\ldots,2^n-1\}^2\;|\; w(x)=w(y)=\delta n\}$ [/mm] für [mm] $\delta\in [/mm] [0,1]$ mit der Gleichverteilung, d.h. gleichverteilte Tupel aus $n$-Bit-Zahlen mit Gewichten je [mm] $\delta [/mm] n$ (+diskrete [mm] $\sigma$-Algebra). [/mm]

Nun konstruiere die Zufallsvariable $W: [mm] \Omega_{n,\delta}\rightarrow\mathbb{N}_0,\; [/mm] W(x,y)=w(x+y)$, d.h. $W$ gibt die Anzahl der Einsen in der Binärdarstellung der Summe an. Die Frage ist nun: Wie ist $W$ verteilt?

Experimente liefern, dass $W$ so ziemlich (diskret) normalverteilt ist. Heuristische Argumente ließen mich sogar ziemlich genau den Erwartungswert berechnen [mm] ($E(W)\approx (2\delta-\frac{\delta^2}{2\delta^2-2\delta +1})n$). [/mm] Nun hätte ich aber gerne noch die Varianz von $W$. Für spezielle $n$ und [mm] $\delta$ [/mm] kann ich diese natürlich immer schätzen, aber gibt es einen Weg, an eine geschlossene Formel zu kommen, die $n$ und [mm] $\delta$ [/mm] beinhaltet?

Vielleicht habt ihr Statistiker ja einen Zaubertrick parat. :)

Vielen Dank!

PS: Beispiel für $n=1000, [mm] \delta=0.3$: [/mm]
[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
Var. Norm.Vert. parameterabh.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:14 Sa 16.08.2014
Autor: felixf

Moin Teufel!

> Erst einmal ein kleines Vorwort: Ich schreibe gerade meine
> Masterarbeit im Gebiet der Kryptographie. Nun bin ich bei
> folgendem Problem angelangt:
>  
> Gegeben zwei [mm]n[/mm]-Bit-Zahlen [mm]a,b[/mm], d.h.
> [mm]a=a_n2^n+\ldots+a_12+a_0[/mm] und [mm]b=b_n2^n+\ldots+b_12+b_0[/mm]. Sei
> [mm]w(x)=x_n+\ldots+x_0[/mm] die Hamming-Gewichts-Funktion, d.h. sie
> zählt die Anzahl der Einsen in den binären Darstellung
> von [mm]x[/mm].
>
> Betrachte nun den diskreten Wahrscheinlichkeitsraum
> [mm]\Omega_{n,\delta}=\{(x,y)\in\{0,\ldots,2^n-1\}^2\;|\; w(x)=w(y)=\delta n\}[/mm]
> für [mm]\delta\in [0,1][/mm] mit der Gleichverteilung, d.h.
> gleichverteilte Tupel aus [mm]n[/mm]-Bit-Zahlen mit Gewichten je
> [mm]\delta n[/mm] (+diskrete [mm]\sigma[/mm]-Algebra).
>  
> Nun konstruiere die Zufallsvariable [mm]W: \Omega_{n,\delta}\rightarrow\mathbb{N}_0,\; W(x,y)=w(x+y)[/mm],
> d.h. [mm]W[/mm] gibt die Anzahl der Einsen in der Binärdarstellung
> der Summe an. Die Frage ist nun: Wie ist [mm]W[/mm] verteilt?

Hoert sich spannend an :-)

Ich hab mal ein wenig darueber nachgedacht. Herausgefunden habe ich leider nichts wirklich sinnvolles.

Aber eine kleine Sache ist mir aufgefallen, die ich erwaehnen wollte, da sie auf den ersten Blick etwas ungewoehnlich scheint: wenn [mm] $\delta \le [/mm] 1/2$ ist (und der Raum nicht gerade leer, weil $n [mm] \delta$ [/mm] keine natuerliche Zahl ist), dann nimmt $W$ auch den Wert 1 an.

Betrachte dazu die Zahlen $x$ und $y$ wie folgt:
$x = .....10101010101$
$y = .....01010101011$

(Jeweils so weit fortgesetzt, dass sie beide $w(x) = w(y) = [mm] \delta [/mm] n$ erfuellen.) Dann ist $x + y = 10....0$ und somit $w(x + y) = 1$.

Der groesstmoegliche Wert fuer $W$ ist immer $2 [mm] \delta [/mm] n$, falls [mm] $\delta \le [/mm] 1/2$ ist.

Und ich koennte mir vorstellen, dass sich der Fall [mm] $\delta [/mm] > 1/2$ moeglicherweise ganz anders verhaelt als der Fall [mm] $\delta \le [/mm] 1/2$.

LG Felix


Bezug
        
Bezug
Var. Norm.Vert. parameterabh.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 04:20 So 24.08.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de