www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Variable berechnen in ln -Fkt.
Variable berechnen in ln -Fkt. < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Variable berechnen in ln -Fkt.: Logarithmus Funktion
Status: (Frage) beantwortet Status 
Datum: 04:53 Fr 04.10.2013
Autor: MaBe

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

ich habe die Formel von "Shannon entropy" gegeben. Diese will ich gerne nach der Variable p ableiten. Ich bin nun an einen Punkt angekommen bin, nachdem ich sämtlich Regeln zum Ableiten dieser Funktionen angewendet habe, dass ich nicht weiter weiß.

Ich möchte den Wert p haben und bin bis zur folgenden Formel vorgedrungen:

0=-p/2 ln(p)- ((1-p)/2) ln (1-p)

Ich habe nach sämtlichen Logarithmusgesetzen geschaut,doch leider habe ich nichts passendes gefunden um die ln-Funktionen zu eliminieren.

Hat einer von euch einen Hint wie ich das Problem angehen kann?

Besten Gruß

        
Bezug
Variable berechnen in ln -Fkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 07:01 Fr 04.10.2013
Autor: Al-Chwarizmi


> Hallo,
>  
> ich habe die Formel von "Shannon entropy" gegeben. Diese
> will ich gerne nach der Variable p ableiten. Ich bin nun an
> einen Punkt angekommen bin, nachdem ich sämtlich Regeln
> zum Ableiten dieser Funktionen angewendet habe, dass ich
> nicht weiter weiß.
>  
> Ich möchte den Wert p haben und bin bis zur folgenden
> Formel vorgedrungen:
>  
> 0=-p/2 ln(p)- ((1-p)/2) ln (1-p)
>  
> Ich habe nach sämtlichen Logarithmusgesetzen geschaut,doch
> leider habe ich nichts passendes gefunden um die
> ln-Funktionen zu eliminieren.


Guten Tag MaBe

             [willkommenmr]

willst du nun eine Ableitung berechnen oder die obige
Gleichung auflösen ?
Im letzteren Fall kann man die Gleichung vereinfachen
zu:

       $\ [mm] p*ln(p)\,+\,(1-p)*ln(1-p)\ [/mm] =\ 0$

Ich denke aber, dass diese Gleichung keine Lösung
im gewünschten Bereich 0<p<1 haben wird, da dann
sowohl p als auch (1-p) positiv und ihre Logarithmen
beide negativ sind. Dann wird der Term auf der linken
Seite dieser Gleichung stets negativ, also sicher nicht
gleich null.
Im Übrigen wird die Gleichung auch im Fall, dass
auf der rechten Seite eine Zahl ungleich 0 steht,
nicht formal, sondern nur numerisch zu lösen sein.

LG ,   Al-Chw.

Bezug
                
Bezug
Variable berechnen in ln -Fkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:19 Fr 04.10.2013
Autor: MaBe


> Guten Tag MaBe
>  
> [willkommenmr]
>  
> willst du nun eine Ableitung berechnen oder die obige
>  Gleichung auflösen ?
>  Im letzteren Fall kann man die Gleichung vereinfachen
>  zu:
>  
> [mm]\ p*ln(p)\,+\,(1-p)*ln(1-p)\ =\ 0[/mm]
>  
> Ich denke aber, dass diese Gleichung keine Lösung
>  im gewünschten Bereich 0<p<1 haben wird, da dann
>  sowohl p als auch (1-p) positiv und ihre Logarithmen
>  beide negativ sind. Dann wird der Term auf der linken
>  Seite dieser Gleichung stets negativ, also sicher nicht
>  gleich null.
>  Im Übrigen wird die Gleichung auch im Fall, dass
>  auf der rechten Seite eine Zahl ungleich 0 steht,
>  nicht formal, sondern nur numerisch zu lösen sein.
>  
> LG ,   Al-Chw.


Hallo,

Danke für diese Begrüßung ;)

Die Formel sowie sie da steht ist schon abgeleitet und nun wollte ich beweisen, dass p zwischen 0 und 1 liegt, sowie du bereits geschrieben hast (Y)

Die genau Problemstellung lautet wie folgt: "Prove that if H(X) is maximal, then both outcomes are equally likely."

Ich habe noch  nicht ganz verstanden wie es möglich ist, dies zu beweisen, wenn H(X) maximal ist.
Hat einer eine Antwort darauf?

Besten Gruß

Bezug
                        
Bezug
Variable berechnen in ln -Fkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 08:47 Fr 04.10.2013
Autor: Diophant

Hallo und auch von mir

[willkommenmr]

> > willst du nun eine Ableitung berechnen oder die obige
> > Gleichung auflösen ?
> > Im letzteren Fall kann man die Gleichung vereinfachen
> > zu:
> >
> > [mm]\ p*ln(p)\,+\,(1-p)*ln(1-p)\ =\ 0[/mm]
> >
> > Ich denke aber, dass diese Gleichung keine Lösung
> > im gewünschten Bereich 0<p<1 haben wird, da dann
> > sowohl p als auch (1-p) positiv und ihre Logarithmen
> > beide negativ sind. Dann wird der Term auf der linken
> > Seite dieser Gleichung stets negativ, also sicher
> nicht
> > gleich null.
> > Im Übrigen wird die Gleichung auch im Fall, dass
> > auf der rechten Seite eine Zahl ungleich 0 steht,
> > nicht formal, sondern nur numerisch zu lösen sein.
> >
> > LG , Al-Chw.

>
>

> Hallo,

>

> Danke für diese Begrüßung ;)

>

> Die Formel sowie sie da steht ist schon abgeleitet und nun
> wollte ich beweisen, dass p zwischen 0 und 1 liegt, sowie
> du bereits geschrieben hast (Y)

So wie du das angegeben hast, besitzt die Gleichung keine Lösung. Von daher erhebt sich die Frage, ob du richtig abgeleitet hast? Am besten gibst du mal die komplette Aufgabenstellung im Originalwortlaut an.

>

> Die genau Problemstellung lautet wie folgt: "Prove that if
> H(X) is maximal, then both outcomes are equally likely."

>

> Ich habe noch nicht ganz verstanden wie es möglich ist,
> dies zu beweisen, wenn H(X) maximal ist.
> Hat einer eine Antwort darauf?

Das könnte man zum Beispiel einfach tun, indem man für ggf. erhaltenen Lösungen in der Ableitung einen Vorzeichenwechsel von + nach - nachweist. Aber wie gesagt: das Ding oben hat keine Lösung.


Gruß, Diophant

Bezug
                                
Bezug
Variable berechnen in ln -Fkt.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:22 Fr 04.10.2013
Autor: Al-Chwarizmi


>  > > [mm]\ p*ln(p)\,+\,(1-p)*ln(1-p)\ =\ 0[/mm]

> > >
> > > Ich denke aber, dass diese Gleichung keine Lösung
> > > im gewünschten Bereich 0<p<1 haben wird, da dann
> > > sowohl p als auch (1-p) positiv und ihre Logarithmen
> > > beide negativ sind. Dann wird der Term auf der linken
> > > Seite dieser Gleichung stets negativ, also sicher
> > > nicht gleich null.
> > > Im Übrigen wird die Gleichung auch im Fall, dass
> > > auf der rechten Seite eine Zahl ungleich 0 steht,
> > > nicht formal, sondern nur numerisch zu lösen sein.
> > >
> > > LG , Al-Chw.

>  
> Hm, und wo liegt das Problem? Ich habe die Gleichung recht
> mühelos aufgelöst bekommen. Allerdings besitzt die so,
> wie du sie angegeben hast, als einzige Lösung p=1.   [haee]

Hallo Diophant,

für p=1 ist doch ln(1-p) gar nicht definiert ...

Ich könnte mir aber vorstellen, dass nicht eine
Nullstelle des Terms -p/2 ln(p)- ((1-p)/2) ln (1-p)
gesucht war, sondern der Wert p, für welchen
er sein Maximum annimmt.
Dies wäre nämlich  [mm] p=\frac{1}{2} [/mm]  und würde dann auch
zur Formulierung in der Aufgabenstellung passen:

"Prove that if H(X) is maximal, then both outcomes
are equally likely."


LG ,   Al




Bezug
                                        
Bezug
Variable berechnen in ln -Fkt.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:30 Fr 04.10.2013
Autor: Diophant

Hallo Al,

> Hallo Diophant,

>

> für p=1 ist doch ln(1-p) gar nicht definiert ...

ja, da hast du völlig Recht: es war wohl noch zu früh am Morgen...

Gruß, Diophant

Bezug
                                                
Bezug
Variable berechnen in ln -Fkt.: halb so schlimm
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:40 Fr 04.10.2013
Autor: Al-Chwarizmi


>  > für p=1 ist doch ln(1-p) gar nicht definiert ...

>  
> ja, da hast du völlig Recht: es war wohl noch zu früh am
> Morgen...
>  
> Gruß, Diophant

Naja - und sooo katastrophal war der Fehler
ja eigentlich auch gar nicht, denn der Term

    $\ p*ln(p)+(1-p)*ln(1-p)$

hat ja, wenn man p (von links her) gegen 1
streben lässt (oder auch von rechts her gegen 0)
immerhin den einseitigen Grenzwert 0 .

LG ,   Al


Bezug
                                                        
Bezug
Variable berechnen in ln -Fkt.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:28 Fr 04.10.2013
Autor: Diophant

Hallo Al,

> Naja - und sooo katastrophal war der Fehler
> ja eigentlich auch gar nicht, denn der Term

>

> [mm]\ p*ln(p)+(1-p)*ln(1-p)[/mm]

>

> hat ja, wenn man p (von links her) gegen 1
> streben lässt (oder auch von rechts her gegen 0)
> immerhin den einseitigen Grenzwert 0 .

Danke, danke. :-) Aber wenn man bedenkt, dass ich den Fall p=0 ja abgefangen habe (den man ja beim Umformen auch herausbekommt, zumindest bei Anwendung einer gewissen 'modernen Definition'), den Fall p=1 jedoch nicht: dann war es eindeutig zu früh. :-P

Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de