www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Vektor-Analysis
Vektor-Analysis < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektor-Analysis: Theoretische Überlegungen
Status: (Frage) beantwortet Status 
Datum: 20:42 Mo 12.11.2012
Autor: gernot2000

Aufgabe 1
Ist v rotationsfrei, so gilt für die Randkurve C eines Fächenstücks F (wenn alle Regularitätsbedingungen erfüllt sind):
a) [mm] \integral_{C}^{}{v{} dx}=0 [/mm]
b) [mm] \integral_{C}^{}{v{} dx}= \integral_{}^{}\integral_{F}^{}{div v dO} [/mm]
c) [mm] \integral_{C}^{}{v dx}\not=0 [/mm]



Aufgabe 2
Es sei V [mm] =\vektor{x^{3}z\\ y^{3}z\\ \bruch{x^{4}+y^{4}}{4}} [/mm]
a)Es gibt eine geschlossene Fläche F mit [mm] \integral_{F}^{}{V dO}\not=0 [/mm]
b) Für alle geschlossenen Flächen ist  [mm] \integral_{F}^{}{V dO}=0 [/mm]
c) Es gibt eine geschlossene Kurve C mit [mm] \integral_{C}^{}{V dx}\not=0 [/mm]
d) Für alle geschlossenen Kurven ist [mm] \integral_{C}^{}{V dx}=0 [/mm]


Bei 1. würd ich sagen,dass a) und b) richtig sind.
Bei 2. a) und d).

Kann mir jemand bei der Lösung dieser fragen behilflich sein, bin mir nämlich bzgl der Lösungen nicht ganz sicher.
Stimmen meine Antworten?

lg gernot

        
Bezug
Vektor-Analysis: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:20 Di 13.11.2012
Autor: gernot2000

Hat hier niemand eine Idee?
Es ist schwierig, diese zusammenhänge wo zu finden.

Bei 1)
a. ist ja klar, dass stimmt, weil vdx= rot v dxdy (für [mm] R^{2}) [/mm]
und b ist ja generell gar nicht von der rotation abhängig.

lg gernot

Bezug
                
Bezug
Vektor-Analysis: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Do 15.11.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Vektor-Analysis: Antwort
Status: (Antwort) fertig Status 
Datum: 19:01 Do 15.11.2012
Autor: rainerS

Hallo gernot!

> Ist v rotationsfrei, so gilt für die Randkurve C eines
> Fächenstücks F (wenn alle Regularitätsbedingungen
> erfüllt sind):
>  a) [mm]\integral_{C}^{}{v{} dx}=0[/mm]
>  b) [mm]\integral_{C}^{}{v{} dx}= \integral_{}^{}\integral_{F}^{}{div v dO}[/mm]
>  
> c) [mm]\integral_{C}^{}{v dx}\not=0[/mm]
>  
>
> Es sei V [mm]=\vektor{x^{3}z\\ y^{3}z\\ \bruch{x^{4}+y^{4}}{4}}[/mm]
>  
> a)Es gibt eine geschlossene Fläche F mit
> [mm]\integral_{F}^{}{V dO}\not=0[/mm]
>  b) Für alle geschlossenen
> Flächen ist  [mm]\integral_{F}^{}{V dO}=0[/mm]
>  c) Es gibt eine
> geschlossene Kurve C mit [mm]\integral_{C}^{}{V dx}\not=0[/mm]
>  d)
> Für alle geschlossenen Kurven ist [mm]\integral_{C}^{}{V dx}=0[/mm]
>  
> Bei 1. würd ich sagen,dass a) und b) richtig sind.
>  Bei 2. a) und d).
>  
> Kann mir jemand bei der Lösung dieser fragen behilflich
> sein, bin mir nämlich bzgl der Lösungen nicht ganz
> sicher.
>  Stimmen meine Antworten?

Aufgabe 1 ist die Anwendung des Satzes von Stokes, Aufgabe 2 die des Satzes von Stokes und des Gauschschen Satzes.

Stokes: [mm]\integral_C v \, dx = \iint\limits_F \mathop{\mathrm{rot}} v\, dx [/mm].

Aus [mm] $\mathop{\mathrm{rot}} [/mm] v=0$ folgt a. b ist Unsinn.

Gauss:  [mm] \integral_F V\,dO = \integral_V \mathop{\mathrm{div}} V\,dV [/mm],

wenn Vdas von F eingeschlossene Volumen ist.

Ausrechnen ergibt [mm] $\mathop{\mathrm{rot}} [/mm] V=0$ und [mm] $\mathop{\mathrm{div}} V\not=0$, [/mm] woraus a und d folgen.

  Viele Grüße
    Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de