www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Vektor bestimmen
Vektor bestimmen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektor bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:01 Sa 17.10.2009
Autor: marc1001

Aufgabe
2.
Ein Kreis mit dem Radius R rolle gleich-förmig auf einer Geraden. Zum Zeitpunkt t=0 berührt der Kreis im Punkt P die Gerade. Ein ganzer Umlauf ist nach [mm] t=2*\pi= [/mm] absolviert.
a)
Geben Sie den Ortsvektor r(t) des Punktes P an. (Hinweis: Stellen sie  zunächst den Ortsvektor des Kreismittelpunktes auf! Der Ursprung des Koordinatensystems wird zweckmäßigerweise in den Punkt P zum Zeitpunkt t=0 gelegt.)
b)
Bestimmen Sie die Länge des Weges, den P während eines ganzen Umlaufs zurücklegt!

Kann mir bitte jemand helfen.
Der Kreismittelpunkt  wir doch so beschrieben. [mm] \vec r_m(t)=\vektor{R*t\\R} [/mm]

Abrer wie komme ich jetzt auf Punkt P

        
Bezug
Vektor bestimmen: Tipp
Status: (Antwort) fertig Status 
Datum: 17:43 Sa 17.10.2009
Autor: rainerS

Hallo!

> 2.
>  Ein Kreis mit dem Radius R rolle gleich-förmig auf einer
> Geraden. Zum Zeitpunkt t=0 berührt der Kreis im Punkt P
> die Gerade. Ein ganzer Umlauf ist nach [mm]t=2*\pi=[/mm]
> absolviert.
>  a)
>  Geben Sie den Ortsvektor r(t) des Punktes P an. (Hinweis:
> Stellen sie  zunächst den Ortsvektor des
> Kreismittelpunktes auf! Der Ursprung des Koordinatensystems
> wird zweckmäßigerweise in den Punkt P zum Zeitpunkt t=0
> gelegt.)
>  b)
>  Bestimmen Sie die Länge des Weges, den P während eines
> ganzen Umlaufs zurücklegt!
>  Kann mir bitte jemand helfen.
> Der Kreismittelpunkt  wir doch so beschrieben. [mm]\vec r_m(t)=\vektor{R*t\\R}[/mm]

[ok]

>  
> Abrer wie komme ich jetzt auf Punkt P

Wenn du den Nullpunkt des Koordinatensystems in den Kreismittelpunkt legst, wie würdest du dann den Punkt P beschreiben? Setze beide Vektoren zusammen!

Viele Grüße
   Rainer

Bezug
                
Bezug
Vektor bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:01 Sa 17.10.2009
Autor: marc1001

Ok, da es ein Kreis ist:

[mm] \vec r_m(t)=\vektor{R*cos\alpha\\R*sin\alpha} [/mm]

Kann das sein


Bezug
                        
Bezug
Vektor bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:04 Sa 17.10.2009
Autor: rainerS

Hallo!

> Ok, da es ein Kreis ist:
>
> [mm]\vec r_m(t)=\vektor{R*cos\alpha\\R*sin\alpha}[/mm]
>
> Kann das sein

Im Prinzip ja.

Zunächst ist das nicht [mm] $r_m$, [/mm] denn wir reden ja vom Punkt P, nicht vom Mittelpunkt - das nur, damit es zu keinem Durcheinander bei den Bezeichnungen kommt.

Du musst noch deinen Winkel [mm] $\alpha$ [/mm] mit der Bewegung, also mit der Zeit in Verbindung bringen. Wie hängt [mm] $\alpha$ [/mm] von $t$ ab? Beachte dabei, in welche Richtung sich der Punkt P bewegt: im Uhrzeigersinn oder im Gegenuhrzeigersinn?

Viele Grüße
   Rainer

Bezug
                                
Bezug
Vektor bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:48 So 18.10.2009
Autor: marc1001

Also [mm] \alpha [/mm] ist abhängig von t, ich könnte also einfach sagen:

[mm] \vec r_p(t)=\vektor{-R\cdot{}cost\\-R\cdot{}sint} [/mm] vom Mittelpunkt aus gesehen
und jetzt muss ich die beiden Vektoren addieren, oder ?

Bezug
                                        
Bezug
Vektor bestimmen: Stimmt noch nicht ganz
Status: (Antwort) fertig Status 
Datum: 13:59 So 18.10.2009
Autor: rainerS

Hallo!

> Also [mm]\alpha[/mm] ist abhängig von t, ich könnte also einfach
> sagen:
>
> [mm]\vec r_p(t)=\vektor{-R\cdot{}cost\\-R\cdot{}sint}[/mm] vom
> Mittelpunkt aus gesehen

Stimmt noch nicht ganz, denn zum Zeitpunkt t=0 muss der Punkt P relativ zum Mittelpunkt die Koordinaten

[mm] \vektor{0\\-R} [/mm]

haben, mit deinem Ansatz kommt aber [mm] $\vektor{-R\\0}$ [/mm] heraus. Du muss noch um [mm] $\pi/2$ [/mm] weiterdrehen.

> und jetzt muss ich die beiden Vektoren addieren, oder ?

[ok]

Viele Grüße
   Rainer


Bezug
                                                
Bezug
Vektor bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:50 So 18.10.2009
Autor: marc1001

Wenn ich um 180° Drehe schreib ich das doch einfach so:

[mm] \vec r_p(t)=\vektor{-R\cdot{}sint\\-R\cdot{}cost} [/mm]

addiert mit

[mm] \vec r_m(t)=\vektor{R*t\\R} [/mm]

währe dann
[mm] \vec r(t)=R*\vektor{t-sint\\1-cost} [/mm]

Aber kannst du it nochmal genau sagen warum ich um [mm] 2\pi [/mm] drehen muss.

Bezug
                                                        
Bezug
Vektor bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:22 So 18.10.2009
Autor: rainerS

Hallo!

> Wenn ich um 180° Drehe schreib ich das doch einfach so:

Du meinst um [mm] $90^\circ$, [/mm] denn [mm] $\pi/2$ [/mm] entsprechen [mm] $90^\circ$. [/mm]

>  
> [mm]\vec r_p(t)=\vektor{-R\cdot{}sint\\-R\cdot{}cost}[/mm]

Ja, jetzt dreht sich dein Punkt P im Uhrzeigersinn um den Mittelpunkt.

>  
> addiert mit
>
> [mm]\vec r_m(t)=\vektor{R*t\\R}[/mm]
>  
> währe dann
> [mm]\vec r(t)=R*\vektor{t-sint\\1-cost}[/mm]

[ok]

> Aber kannst du it nochmal genau sagen warum ich um [mm]2\pi[/mm]
> drehen muss.

Ich verstehe gerade die Frage nicht, meinst du [mm] $\pi/2$? [/mm]

Nimm dir deine ursprüngliche Formel und setze t=0 ein: wo befindet sich nach deiner Formel der Punkt P relativ zum Kreismittelpunkt?

Viele Grüße
  Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de