www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Vektor wird abgebildet
Vektor wird abgebildet < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektor wird abgebildet: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:35 Fr 07.02.2014
Autor: kakashi93

Die Aufgabe lautet ungefähr so:

[mm] \alpha:\IR^3\to\IR^3 [/mm]
ist eine lineare Abbildung

Es sind zwei Vektoren gegeben [mm] \vec{v} [/mm] und [mm] \vec{w} [/mm] und [mm] \vec{x} [/mm] = v-3w

Eigenwert von [mm] \vec{v} [/mm] und [mm] \vec{w} [/mm] sind bekannt. Wie kann man herausfinden auf welchen Vektor der Vektor [mm] \vec{x} [/mm] abgebildet wird?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vektor wird abgebildet: Antwort
Status: (Antwort) fertig Status 
Datum: 01:57 Fr 07.02.2014
Autor: Sax

Hi,

> Die Aufgabe lautet ungefähr so:
>  
> [mm]\alpha:\IR^3\to\IR^3[/mm]
>  ist eine lineare Abbildung
>  
> Es sind zwei Vektoren gegeben [mm]\vec{v}[/mm] und [mm]\vec{w}[/mm] und
> [mm]\vec{x}[/mm] = v-3w
>  
> Eigenwert von [mm]\vec{v}[/mm] und [mm]\vec{w}[/mm] sind bekannt.

Sei also [mm] \vec{v} [/mm] Eigenvektor zum Eigenwert [mm] \lambda_1 [/mm] und [mm] \vec{w} [/mm] Eigenvektor zum Eigenwert [mm] \lambda_2, [/mm]
dann ist [mm] \alpha(\vec{v})=\lambda_1*\vec{v} [/mm] und [mm] \alpha(\vec{w})=\lambda_2*\vec{w}. [/mm]

> Wie kann
> man herausfinden auf welchen Vektor der Vektor [mm]\vec{x}[/mm]
> abgebildet wird?
>  

[mm] \alpha(\vec{x})=\alpha(\vec{v}-3*\vec{w}) [/mm]
Nutze jetzt die Linearität von [mm] \alpha [/mm] und dann die Eigenschaften der Eigenvektoren.
So erhälst du [mm] \alpha(\vec{x}) [/mm] als Linearkombination von [mm] \vec{v} [/mm] und [mm] \vec{w}. [/mm]

Gruß Sax.

Bezug
                
Bezug
Vektor wird abgebildet: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:47 Fr 07.02.2014
Autor: kakashi93

[mm] \alpha(\vec{x}) [/mm] = [mm] \alpha(\vec{v} [/mm] - [mm] 3\*\vec{w}). [/mm] Auf das wäre ich auch gekommen, jedoch wie kann ich mit [mm] \alpha(\vec{x}) [/mm] die Abbildung errechnen?

Bezug
                        
Bezug
Vektor wird abgebildet: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:24 Fr 07.02.2014
Autor: Richie1401

Hallo,

stelle bitte eine Frage auch als Frage und nicht als Mitteilung. Sonst verläuft deine Frage im Sand und wird nicht beantwortet.

> [mm]\alpha(\vec{x})[/mm] = [mm]\alpha(\vec{v}[/mm] - [mm]3\*\vec{w}).[/mm] Auf das
> wäre ich auch gekommen, jedoch wie kann ich mit
> [mm]\alpha(\vec{x})[/mm] die Abbildung errechnen?

[mm] \alpha [/mm] ist doch eine lineare Abbildung.

[mm] \alpha(\vec{v}-3*\vec{w})=\alpha(\vec{v})-3\alpha(\vec{w})=\lambda_1\vec{v}-3\lambda_2\vec{w} [/mm]

Bezug
                                
Bezug
Vektor wird abgebildet: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:28 Fr 07.02.2014
Autor: kakashi93

Also, wäre die Aufgabe beantwortet wen ich nach [mm] \alpha(\vec{v}-3\cdot{}\vec{w}) [/mm] auflöse? Aber dann hab ich überhaupt nichts mit den Eigenwerten gemacht.

Bezug
                                        
Bezug
Vektor wird abgebildet: Antwort
Status: (Antwort) fertig Status 
Datum: 13:31 Fr 07.02.2014
Autor: fred97


> Also, wäre die Aufgabe beantwortet wen ich nach
> [mm]\alpha(\vec{v}-3\cdot{}\vec{w})[/mm] auflöse? Aber dann hab ich
> überhaupt nichts mit den Eigenwerten gemacht.  

Doch:

$ [mm] \alpha(\vec{v}-3\cdot{}\vec{w})=\alpha(\vec{v})-3\alpha(\vec{w})=\lambda_1\vec{v}-3\lambda_2\vec{w} [/mm] $

[mm] \lambda_1 [/mm] und [mm] \lambda_2 [/mm] waren doch die Eigenwerte.

FRED


Bezug
                                                
Bezug
Vektor wird abgebildet: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:17 Fr 07.02.2014
Autor: kakashi93

Sagen wir: [mm] \lambda_{1} [/mm] = 1 und [mm] \lambda_{2} [/mm] = 5

Vektoren: [mm] \vec{v}=\vektor{1\\0\\1} [/mm] und [mm] \vec{w}=\vektor{0\\0\\1} [/mm]

So müsste es doch gehen, oder? : [mm] 1\*\vektor{1\\0\\1}-5\*3\vektor{0\\0\\1} [/mm]

Bezug
                                                        
Bezug
Vektor wird abgebildet: Antwort
Status: (Antwort) fertig Status 
Datum: 15:09 Fr 07.02.2014
Autor: angela.h.b.

Ja.

LG Angela

Bezug
                                                        
Bezug
Vektor wird abgebildet: Antwort
Status: (Antwort) fertig Status 
Datum: 15:27 Fr 07.02.2014
Autor: Richie1401

Hi,

> Sagen wir: [mm]\lambda_{1}[/mm] = 1 und [mm]\lambda_{2}[/mm] = 5
>  
> Vektoren: [mm]\vec{v}=\vektor{1\\0\\1}[/mm] und
> [mm]\vec{w}=\vektor{0\\0\\1}[/mm]
>  
> So müsste es doch gehen, oder? :
> [mm]1\*\vektor{1\\0\\1}-5\*3\vektor{0\\0\\1}[/mm]  

Und warum rechnest du das nicht noch aus?

Ich würde dir empfehlen die gesamten Posts noch einmal durchzulesen und alles sauber aufzuschrieben. Eigentlich steckt hier nicht viel Theorie dahinter. Immer nur einsetzen und ausrechnen.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de