www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - Vektoren, Beträge, Orthogonal.
Vektoren, Beträge, Orthogonal. < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektoren, Beträge, Orthogonal.: Tipp
Status: (Frage) beantwortet Status 
Datum: 14:25 Di 20.11.2007
Autor: timako

Aufgabe
Seien [mm] \vec{x}, \vec{y} \in \IR^{n}. [/mm] Zeigen Sie:
a) [mm] |\vec{x} [/mm] + [mm] \vec{y}| [/mm] = [mm] |\vec{x} [/mm] - [mm] \vec{y}| \gdw \vec{x} \perp \vec{y} [/mm]
b) [mm] |\vec{x} [/mm] + [mm] \vec{y}|^{2} [/mm] + [mm] |\vec{x} [/mm] - [mm] \vec{y}|^{2} [/mm] = [mm] 2|\vec{x}|^{2} [/mm] + [mm] 2|\vec{y}|^{2} [/mm]
c) [mm] 4\vec{x}\vec{y} [/mm] = [mm] |\vec{x} [/mm] + [mm] \vec{y}|^{2} [/mm] - [mm] |\vec{x} [/mm] - [mm] \vec{y}|^{2} [/mm]

zu a) Die linke Seite der Äquivalenz: In Kompononentenschreibweise, dann Auflösen der Beträge, dann Auflösen der Binome -> ich erhalte zwei Wurzelausdrücke, die sich um den Faktor [mm] +2x_{1}y_{1} [/mm] usw. bzw. [mm] -2x_{1}y_{1} [/mm] usw. unterscheiden. Kann ich jetzt die Bedingung der Orthogonalität [mm] x_{1}*y_{1} [/mm] = 0 usw. benutzen, dann ist ja die Differenz der Wurzelausdrücke gleich Null?
Bin mir über die formal richtige Vorgehensweise hier nicht klar, vielen Dank im Voraus.

Gruß,
Timm

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Edit:
Aufgabenstellung a) korrigiert.

        
Bezug
Vektoren, Beträge, Orthogonal.: da fehlt was ...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:32 Di 20.11.2007
Autor: Loddar

Hallo Timm!


Da fehlt doch noch etwas an der Aufgabenstellung bei a.), oder?


Gruß
Loddar


Bezug
        
Bezug
Vektoren, Beträge, Orthogonal.: Umformung
Status: (Antwort) fertig Status 
Datum: 14:53 Di 20.11.2007
Autor: Loddar

Hallo Timm!


Ich vermute mal, Du sollst bei der 1. Aufgabe folgendes zeigen:
[mm] $$\left|\vec{x}+\vec{y}\right|-\left|\vec{x} -\vec{y}\right| [/mm] \ [mm] \red{= \ 0} [/mm] \ \  [mm] \gdw [/mm] \ \  [mm] \vec{x} \perp \vec{y}$$ [/mm]

Wenn Du von links nach rechts vorgehst, solltest Du irgendwann erhalten:
[mm] $$4*x_1*y_1+4*x_2*y_2+...+4*x_n*y_n [/mm] \ = \ 0$$
Wenn Du nun $4_$ ausklammerst und durch $4_$ teilst, verbleibt ja nur noch das ausgeschriebene MBSkalarprodukt für [mm] $\vec{x}*\vec{y}$ [/mm] .


Gruß
Loddar


Bezug
        
Bezug
Vektoren, Beträge, Orthogonal.: Korrektur
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:54 Di 20.11.2007
Autor: timako

Sry für den Fehler, bei a) heißt es (habe im pdf nachgeschaut, mein dämlicher drucker hat mir doch tatsächlich ein = als - ausgedruckt!):

[mm] |\vec{x} [/mm] + [mm] \vec{y}| [/mm] = [mm] |\vec{x} [/mm] - [mm] \vec{y}| \gdw \vec{x} \perp \vec{y} [/mm]

Gruß,
Timm

P.S. Dann ist mir auch einiges klarer ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de