www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Vektoren abhängig?
Vektoren abhängig? < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektoren abhängig?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:49 Sa 07.08.2004
Autor: kai

Ich habe diese Frage in keinem weiteren Forum gestellt.
Es sind 2 Vektoren  der 3. Dimension gegeben!
Aus denen hab ich das folgende l. Gleichungssystem erstellt: 4r + 8t = 0 ; -3r - 6t = 0 ; 2r + 4t = 0;
Ich soll bestimmen, ob sie unabh. oder abh. sind. Man sieht ja gleich das die Vektoren l. abh. sind  z.B. für r=2 und t=-1 das ist ja noch recht leicht zu durchschauen! Aber wenn ich jetzt 3,4 oder 5 Vektoren hab ist das ja nicht mehr so leicht.
Nun zu meiner Frage:
Wenn ich das o.g. l. Gleichss. auflösen will krieg ich ja offensichtlich immer 0=0 raus oder nicht? Heisst das dann das die Vektoren l. abhängig sind?
Hoffe nur das das jetzt keine dumme Frage ist;)  


        
Bezug
Vektoren abhängig?: Antwort
Status: (Antwort) fertig Status 
Datum: 14:48 Sa 07.08.2004
Autor: Clemens

Hallo kai!

> Nun zu meiner Frage:
> Wenn ich das o.g. l. Gleichss. auflösen will krieg ich ja offensichtlich
> immer 0=0 raus oder nicht?

Wenn du ein Gleichungssystem auflöst, ermittelst du die möglichen Werte der Unbekannten (hier r und t), für die die Gleichungen des Gleichungssystems stimmen. Wenn du die dann einsetzt, kommt natürlich immer 0 = 0 raus.

Hier gilt zum Beispiel:
Lösungsmenge = {(r,t) aus [mm] R^2| [/mm] r = -2t}
(hier habe ich die Lösungen als Paar aufgefasst).

Vielleicht meinst du aber die Frage auch so, dass du eine Gleichung nach einer Variablen auflöst und dann in die anderen Gleichungen einsetzt. Dann eliminierst du ja eine Variable. Wenn dann in allen Gleichungen 0 = 0 rauskommt, dann kannst du natürlich für alle Variablen jeden denkbaren Wert einsetzen und es kommt immer 0 = 0 raus. Hier musst du aber aufpassen, was ich an deinem auf 2 Gleichungen reduzierten LGS zeigen möchte:
I   4r + 8t = 0
II  2r + 4t = 0
I <==> r = -2t
I in II ==> -4t + 4t = 0
==> 0 = 0

Jetzt kommt tatsächlich 0 = 0 raus und die untere Gleichung stimmt für alle Werte, die r und t annehmen können. Die oberen aber nicht, denn zum Beispiel stimmt die Gleichung I für r = 1 und t = 0 nicht. Das liegt daran, dass wir keine Äquivalenzumformungen gemacht haben, sondern nur Implikationen.

Wenn du aus einem LGS also folgerst, dass 0 = 0, dann können die Vektoren linear abhängig oder unabhängig sein.


> Heisst das dann das die Vektoren l. abhängig sind?

Die Vektoren v1, ..., vn heißen linear abhängig, wenn es Zahlen r1,...,rn mit ri  [mm] \not= [/mm] 0 für ein i, und r1*v1 + ... + rn*vn = 0.

D. h. wenn du die lineare Abhängigkeit zeigen willst, reicht es nicht, dass du für ein (r,t)-Paar zeigst, dass alle Gleichungen auf die Form 0 = 0 gebracht werden können, sondern du musst zeigen, dass (r,t) [mm] \not= [/mm] (0,0). Das trifft hier natürlich zu: r = 2, t = -1, also sind die Vektoren linear abhängig.

> Aber wenn ich jetzt 3,4 oder 5 Vektoren hab ist das ja nicht mehr so leicht.

Bei so vielen Vektoren und so vielen Vorfaktoren bietet sich der Gauss'sche Algorithmus an, um die Lösungen des LGS zu ermitteln.

> Hoffe nur das das jetzt keine dumme Frage ist;)

Es gibt keine dummen Fragen.


MfG Clemens


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de