www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Vektoren in neuer Basis
Vektoren in neuer Basis < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektoren in neuer Basis: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:43 Mi 15.02.2006
Autor: andi_bar

Aufgabe
Neue Basis:  [mm] v1=\vektor{1 \\ -1 \\ 0} v2=\vektor{1 \\ 0 \\ 1} v3=\vektor{0 \\ 1 \\ -1} [/mm]
[mm] a=\vektor{3 \\ -2 \\ 1} [/mm]

Stelle den Vektor a in der neuen Basis dar.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Also das war ne Klausuraufgabe und ich es auf dem Weg gelöst:

Als erstes lineare unabhängigkeit geprüft.

Dann berechnet:

a' = a1 * v1 + a2 * v2 + a3 * v3
a' = 3 * [mm] \vektor{1 \\ -1 \\ 0} [/mm] -2 * [mm] \vektor{1 \\ 0 \\ 1} [/mm] + [mm] \vektor{0 \\ 1 \\ -1} [/mm]
a' = [mm] \vektor{1 \\ -2 \\ -3} [/mm]

Das wurde aber als falsch bewertet.

Dann habe ich es auf nem anderen Weg versucht, indem ich ein Gleichungssystem aufgestellt habe. Linke Seite die neue Basis und recht Seite der Vektor und habe die Koeffizienten berechnet. Diese dann als neuen Vektor genommen. Hatte dann diesen hier: [mm] \vektor{2 \\ 0 \\ 1} [/mm]

Aber ist der nun richtig? Vielleicht könnt ihr mir Gewissheit geben?

Danke im voraus!

        
Bezug
Vektoren in neuer Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 20:48 Mi 15.02.2006
Autor: Zwerglein

Hi, andi_bar,

> Neue Basis:  [mm]v1=\vektor{1 \\ -1 \\ 0} v2=\vektor{1 \\ 0 \\ 1} v3=\vektor{0 \\ 1 \\ -1}[/mm]
>  
> [mm]a=\vektor{3 \\ -2 \\ 1}[/mm]
>  
> Stelle den Vektor a in der neuen Basis dar.

> Also das war ne Klausuraufgabe und ich es auf dem Weg
> gelöst:
>  
> Als erstes lineare unabhängigkeit geprüft.
>  
> Dann berechnet:
>  
> a' = a1 * v1 + a2 * v2 + a3 * v3
>  a' = 3 * [mm]\vektor{1 \\ -1 \\ 0}[/mm] -2 * [mm]\vektor{1 \\ 0 \\ 1}[/mm] +
> [mm]\vektor{0 \\ 1 \\ -1}[/mm]
>  a' = [mm]\vektor{1 \\ -2 \\ -3}[/mm]
>  
> Das wurde aber als falsch bewertet.

Ist auch falsch! Deine Lösung wäre nur dann richtig, wenn die Koordinatendarstellung des Vektors a bezüglich der Basis [mm] \{v1; v2; v3 \} [/mm] gleich [mm] \vektor{3 \\ -2 \\ 1} [/mm] wäre.
Aber das ist sie eben nicht! Dies ist die Darstellung bezüglich der Basis [mm] e1=\vektor{1 \\ 0 \\ 0}; e2=\vektor{0 \\ 1 \\ 0}; e3=\vektor{0 \\ 0 \\ 1}. [/mm]

> Dann habe ich es auf nem anderen Weg versucht, indem ich
> ein Gleichungssystem aufgestellt habe. Linke Seite die neue
> Basis und rechte Seite der Vektor und habe die Koeffizienten
> berechnet. Diese dann als neuen Vektor genommen. Hatte dann
> diesen hier: [mm]\vektor{2 \\ 0 \\ 1}[/mm]
>  
> Aber ist der nun richtig? Vielleicht könnt ihr mir
> Gewissheit geben?

Stimmt nicht ganz! Richtig wäre [mm] \vektor{2 \\ 1 \\ 0}. [/mm]

mfG!
Zwerglein

Bezug
        
Bezug
Vektoren in neuer Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 20:56 Mi 15.02.2006
Autor: DaMenge

Hi,

als Ergänzung:
gesucht sind die koeffizienten, so dass

$ [mm] \vektor{3\\-2\\1} [/mm] = [mm] x_1 [/mm] * [mm] \vektor{1 \\ -1 \\ 0}x_2*\vektor{1 \\ 0 \\1}+x_3 *\vektor{0 \\ 1 \\ -1}$ [/mm]

was ja gleich als Matrixschreibweise ist :
[mm] $\pmat{1&1&0\\-1&0&1\\0&1&-1}*\vektor{x_1\\x_2\\x_3}=\vektor{3\\-2\\1}$ [/mm]

also [mm] $\vektor{x_1\\x_2\\x_3}=\pmat{1&1&0\\-1&0&1\\0&1&-1}^{-1}*\vektor{3\\-2\\1}$ [/mm]

diese inverse Matrix ist natürlich die MBTransformationsmatrix, die man auch hätte einfach berechnen können...

viele Grüße
DaMenge

Bezug
        
Bezug
Vektoren in neuer Basis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:03 Mi 15.02.2006
Autor: andi_bar

Vielen Dank euch beiden. Jetzt erschliessen sich bei mir einige Zusammenhänge und ich hab es jetzt verstanden.

Natürlich ist die Lösung (2,1,0)..hab mich in der Zeile vertan.

Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de