www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Vektoren zwei Unbekannte abhän
Vektoren zwei Unbekannte abhän < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektoren zwei Unbekannte abhän: linear unabhängig oder nicht
Status: (Frage) beantwortet Status 
Datum: 15:46 Sa 28.10.2006
Autor: gender

Also

ich hab die Vektoren [mm] v_{1}, v_{2}, v_{3} [/mm] mit element [mm] \IR^{4} [/mm] hoch 4

[mm] v_{1}:= \vektor{9 \\ 2 \\ 3 \\ 4} [/mm]
[mm] v_{2}:= \vektor{2 \\ a \\ 4 \\ 1} [/mm]
[mm] v_{3}:= \vektor{3 \\ 4 \\ b \\ 2} [/mm]

Frage:
Für welche a und b sind [mm] v_{1}, v_{2} [/mm] und [mm] v_{3} [/mm] linear unabhängig?


Wie die Bedingungen sind, dass Vektoren linear unabhängig sind usw. ist mir klar, nur das lösen des Gleichungssystem und vor allem die dabei enthaltenen zwei unbekannten a und b machen mir probleme...


Anders geschrieben heißt es doch also: für welche a, b ist nur [mm] \alpha, \beta, \delta [/mm] =0 möglich ?


Dann stelle ich folgendes Gleichungssystem auf:

I     9* [mm] \alpha [/mm] + 2 * [mm] \beta [/mm] + 3 * [mm] \delta [/mm] = 0
II    2* [mm] \alpha [/mm] + a * [mm] \beta [/mm] + 4 * [mm] \delta [/mm] = 0
III   3* [mm] \alpha [/mm] + 4 * [mm] \beta [/mm] + b * [mm] \delta [/mm] = 0
IV    4* [mm] \alpha [/mm] + 1*  [mm] \beta [/mm] + 2 * [mm] \delta [/mm] = 0

Wie löse ich das jetzt auf, und vor allem wie mache ich das mit den Unbekannten a und b....

ist das aber so mit gleichungen erstmal richtig usw. ???

kann mir einer erläutern wie das  geht....

wäre super....
danke schonmal



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vektoren zwei Unbekannte abhän: Antwort
Status: (Antwort) fertig Status 
Datum: 20:32 Sa 28.10.2006
Autor: M.Rex

Hallo

Wenn du das LGelichungssystem löst, solltes du am Ende eine Bedungung á la a=5b, oder a+5=b bekommen,

Damit hättest du dann deine Bedingung.

Marius

Bezug
                
Bezug
Vektoren zwei Unbekannte abhän: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:31 So 29.10.2006
Autor: gender

wirklich vielen dank für die antwort


aber wie komme ich darauf... wie mache ich das...

könnte mir das bitte wer erläutern ?????????

Bezug
                        
Bezug
Vektoren zwei Unbekannte abhän: Antwort
Status: (Antwort) fertig Status 
Datum: 11:59 So 29.10.2006
Autor: M.Rex

Hallo

Also.

Folgendes GLS gilt es zu lösen.

[mm] \vmat{9x+2y+3z=0\\2x+ay+4z=0\\3x+4y+bz=0\\4x+y+2z=0} [/mm]
[mm] \gdw\vmat{36x+8y+12z=0\\36x+18ay+72z=0\\36x+48y+12bz=0\\36x+9y+18z=0} [/mm]
[mm] \gdw\vmat{36x+8y+12z=0\\(8-18a)y-60z=0\\-40y+(12-12b)z=0\\-y-6z=0} [/mm]
[mm] \gdw\vmat{9x+2y+3z=0\\(8-18a)y-60z=0\\-40y+(12-12b)z=0\\-y-6z=0} [/mm]

Aus der letzten Gleichung erhältst du nun:  y=-6z
Wenn du das in die anderen Drei Gleichungen einsetzt ergibt sich:
[mm] \vmat{9x+2(-6z)+3z=0\\(8-18a)(-6z)-60z=0\\-40(-6z)+(12-12b)z=0\\-y-6z=0} [/mm]
[mm] \gdw\vmat{9x-9z=0\\(108a-48)z-60z=0\\240z-(12-12bz=0\\y=-6z} [/mm]
[mm] \gdw\vmat{9x-9z=0\\(108a-108)z=0\\(232+12b)z=0\\y=-6z} [/mm]
Aus der ersten Gleichung gilt nun x=z.
[mm] \gdw\vmat{x=z\\(108a-108)z=0\\(232+12b)z=0\\y=-6z} [/mm]

Und jetzt gilt da ja z nicht Null sein soll,(dann würden ja auch x und y =0)
1) 108a-108=0 und 2)232+12b=0

Marius




Bezug
                                
Bezug
Vektoren zwei Unbekannte abhän: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:38 So 29.10.2006
Autor: gender

danke @marius

3 fragen habe ich aber immernoch:

1.
also ersmtal: ist dann
a=1 und b= -58/3  ????


2. Warum soll z nicht = 0 sein ???


3. Im GLS: der erste Schritt ist klar; du multiplizierst die Gleichungen so, dass alle Gleichungen vorne = 36 x sind.

Den folgenden Schritt verstehe ich aber nicht ganz.
Mir scheint als subtrahierst du die 2. und 3. und 4. Zeile mit der 1.

Komischerweise hätte ich dann aber bei allen gleichungen genau ein anderes vorzeichen....
oder was machst du in diesem schritt ????

danke nochmal
ich hoffe, nach diesen Fragen hab ichs kapiert...


Bezug
                                        
Bezug
Vektoren zwei Unbekannte abhän: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:47 So 29.10.2006
Autor: kroete_07

Wenn z=0 dann auch y=0 und x=0, für linear unabhängigkeit gilt aber das die nicht 0 sein dürfen!



Bezug
                                                
Bezug
Vektoren zwei Unbekannte abhän: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:25 So 29.10.2006
Autor: gender

ja ok, und wie siehts mit meinen beiden anderen Fragen aus ???

Bezug
                                                        
Bezug
Vektoren zwei Unbekannte abhän: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Di 31.10.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de