www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - Vektorfeld
Vektorfeld < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorfeld: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:21 Di 15.05.2007
Autor: Phecda

hi eine frage zum vektorfeld:
Ein Vektorfeld v ist doch ein Gradientenfeld wenn rot v= 0 ist. Diese Aussage hat eine äquivalente Form d.h. wenn rot v = 0 dann ist v ein Gradientenfeld.
Ist das so richtig?

Oder stimmt das nur wenn v in einem einfach zusammenhängendem Gebiet liegt?

Kann mir jmd genau sagen wie das genau ist?
und noch eine Frage
wie erkenne ich denn ein zusammenhängendes Gebiet ohne jetzt bsp mir den Vektor in Derive zu zeichnen und zu schauen ob da ein Loch vorkommt. gibt es da einen mathematischen rechenweg..
(Das ganze erinnert mich an Polstellen bei gebrochenrationalen Funktion aus der Schule. gibt es beim vektorfeld auch einen rechneweg zu überprüfen wo sich ein loch befindet?)

Danke
mfg Phecda

        
Bezug
Vektorfeld: Antwort
Status: (Antwort) fertig Status 
Datum: 21:53 Di 15.05.2007
Autor: leduart

Hallo Phecda
> hi eine frage zum vektorfeld:
>  Ein Vektorfeld v ist doch ein Gradientenfeld wenn rot v= 0
> ist. Diese Aussage hat eine äquivalente Form d.h. wenn rot
> v = 0 dann ist v ein Gradientenfeld.
>  Ist das so richtig?

eigentlich ist es umgekehrt, man nennt ein vektorfeld ein Gradientenfeld, wenn es grad eines skalaren "Feldes" ist.
Was du hingeschrieben hast sind dann notwendige Bedingungen.  

> Oder stimmt das nur wenn v in einem einfach
> zusammenhängendem Gebiet liegt?

wenn du v auf einfach zusammenhängende Gebiete beschränkst, wird die notwendige bedingung hinreichend.

> Kann mir jmd genau sagen wie das genau ist?
>  und noch eine Frage
>  wie erkenne ich denn ein zusammenhängendes Gebiet ohne
> jetzt bsp mir den Vektor in Derive zu zeichnen und zu
> schauen ob da ein Loch vorkommt. gibt es da einen
> mathematischen rechenweg..

Genau wie an den Polen, ist das Vektorfeld in einem Punkt nicht definiert, oder nicht differenzierbar, , insofern entspricht es den Polen. Du hattest doch grad in einem der früheren posts und in Wiki ein Beispiel.
die Ableitungen und rot sind lokale Eigenschaften, die überall, erfüllt sein können oder nicht überall. und die richtige Formulierung ist wenn rot ÜBERALL =0 ist (dazu muss es natürlich auch existieren) oder wenn JEDES geschlossene Wegintegral 0 ist.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de