www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Vektorfeld in der Ebene
Vektorfeld in der Ebene < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorfeld in der Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:28 So 09.01.2011
Autor: raubkaetzchen

Aufgabe
Beschreibe den Fluss eines jeden linearen Vektorfeldes X in [mm] \IR^2, [/mm] für den Fall dass [mm] X=X^\dag [/mm]

Also ich verstehe nicht so recht, was der Ausdruck [mm] X=X^\dag [/mm] bedeuten soll. Wir haben ihn nicht definiert und gefunden habe ich bisher auch nichts dergleichen.

Weis jemand zufällig, was das bedeuten könnte?

Liebe Grüße
r.

        
Bezug
Vektorfeld in der Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 20:44 So 09.01.2011
Autor: abakus


> Beschreibe den Fluss eines jeden linearen Vektorfeldes X in
> [mm]\IR^2,[/mm] für den Fall dass [mm]X=X^\dag[/mm]
>  Also ich verstehe nicht so recht, was der Ausdruck
> [mm]X=X^\dag[/mm] bedeuten soll. Wir haben ihn nicht definiert und
> gefunden habe ich bisher auch nichts dergleichen.

Aber komischerweise hast du immerhin einen [mm] \LaTeX [/mm] - Befehl zur Darstellung von [mm] X^\dag [/mm] gefunden. So ganz unwissend kannst du nicht sein...
Ich hätte nicht mal gewusst, wie man dieses "Schwert"-Symbol schreibt.
Gruß Abakus

>  
> Weis jemand zufällig, was das bedeuten könnte?
>  
> Liebe Grüße
>  r.


Bezug
                
Bezug
Vektorfeld in der Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:32 So 09.01.2011
Autor: raubkaetzchen

Was soll das denn nun bedeuten? Möchtest du mir unterstellen, dass ich in wirklichkeit wüsste wofür das steht?
Wie gesagt habe ich im Internet nach einer Bedeutung gesucht und nichts gefunden. Um wenigstens meine Frage stellen zu können, habe ich anschließend nach einer Darstellung dieses Symbols gesucht und bin fündig geworden.
Das bedeutet aber noch lange nicht, dass ich mich inhaltlich bzw. mathematisch damit auskenne.

Gruß
r.

Bezug
                        
Bezug
Vektorfeld in der Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 22:19 So 09.01.2011
Autor: qsxqsx

Ich kenne das Zeichen für Matritzen und zwar unter der Verwendung dass wenn du eine Matrix X hast, dann ist [mm] X^{Kreuzdings} [/mm] die komplex Konjugierte und Transponierte von X.

Was das mit deinem Vektorfeld zu tun hat kann ich dir nicht sagen.

Gruss

Bezug
        
Bezug
Vektorfeld in der Ebene: Vermutung
Status: (Antwort) fertig Status 
Datum: 22:31 So 09.01.2011
Autor: Al-Chwarizmi


> Beschreibe den Fluss eines jeden linearen Vektorfeldes X in
> [mm]\IR^2,[/mm] für den Fall dass [mm]X=X^\dag[/mm]
>  Also ich verstehe nicht so recht, was der Ausdruck
> [mm]X=X^\dag[/mm] bedeuten soll. Wir haben ihn nicht definiert und
> gefunden habe ich bisher auch nichts dergleichen.
>  
> Weis jemand zufällig, was das bedeuten könnte?
>  
> Liebe Grüße
>  r.


Hallo raubkätzchen,

ehrlich gesagt habe ich auch keine Ahnung, was damit
gemeint sein könnte. Ich versuche mir aber irgendwas
auszumalen, was eventuell Sinn machen könnte.

Ich nehme einmal an, dass das " lineare Vektorfeld in [mm] \IR^2 [/mm] "
durch eine [mm] 2\times{2} [/mm] - Matrix A beschrieben ist:

       $\ A\ =\ [mm] \pmat{a&b\\c&d}$ [/mm]

       $\ [mm] A*\pmat{x\\y}\ [/mm] =\ [mm] \pmat{a*x+b*y\\c*x+d*y}$ [/mm]

Dann könnte man das  [mm] \dag [/mm] - Symbol als "$\ T$" für die transponierte
Matrix auffassen, also   $\ A\ =\ [mm] A^T$ [/mm] . Für die angegebene Matrix A
würde dies bedeuten, dass  $\ b=c$  gefordert ist.


LG    Al-Chw.




Bezug
                
Bezug
Vektorfeld in der Ebene: Adjungierte
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:33 So 09.01.2011
Autor: qsxqsx

Ich hab jetzt das Wort gefunden: Adjungierte. Auf Wikipedia stehts mit dem Symbol.

Gruss

Bezug
                        
Bezug
Vektorfeld in der Ebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:40 So 09.01.2011
Autor: raubkaetzchen

Vielen Dank an euch beide!
Ihr habt mir wirklich sehr weitergeholfen! Ich gehe nun davon aus, dass mit dem Zeichen die adjungierte Matrix gemeint ist wie in Wikipedia steht.

Liebe Grüße
r.

Bezug
                        
Bezug
Vektorfeld in der Ebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:44 So 09.01.2011
Autor: Al-Chwarizmi


> Ich hab jetzt das Wort gefunden: Adjungierte. Auf Wikipedia
> stehts mit dem Symbol.
>  
> Gruss


Ich nehme einmal an, dass man es in der Aufgabe nicht auch
noch mit einer komplexen Abbildungsmatrix zu tun hat.
Für reelle Matrizen ist die adjungierte Matrix dasselbe wie die
transponierte (an der Hauptdiagonalen gespiegelte).

LG   Al


Bezug
                                
Bezug
Vektorfeld in der Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:44 Mo 10.01.2011
Autor: raubkaetzchen

Hallo,

vielen Dank für den Hinweis Al-Chwarizmi.
Eine Frage habe ich dann noch. Woran liegt es, dass wir das Vektorfeld X als matrix schreiben können?
Ist das i.A. für Vektorfelder in [mm] \IR^n [/mm] möglich, oder ist mit "lineares Vektorfeld" genau diese Einschränkung auf Matrizen gemeint?

Liebe Grüße

Bezug
                                        
Bezug
Vektorfeld in der Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 19:15 Mo 10.01.2011
Autor: pelzig

Hallo,

Die Menge der glatten Vektorfelder [mm]\tau^1(\IR^m)[/mm] lässt sich auf kanonische Weise mit [mm]C^\infty(\IR^m,\IR^m)[/mm] identifizieren durch
[mm]\Phi:C^\infty(\IR^m,\IR^m)\ni F\mapsto\left(p\mapsto\sum_{i=1}^mF^i(p)\left.\frac{\partial}{\partial x^i}\right|_p\right)\in\tau^1(M)[/mm]
wobei [mm]x=\operatorname{id}_{\IR^m}[/mm] die Standart-Koordinaten auf [mm]\IR^m[/mm] sind.
Dieses [mm]\Phi[/mm] is ein linearer Isomorphismus von (unendlich-dimensionalen Vektorräumen). Nun ist ja die Menge [mm]\mathcal{L}(\IR^m,\IR^m)[/mm] der linearen Endomorphismen auf [mm]\IR^m[/mm] eine Teilmenge von [mm]C^\infty(\IR^m,\IR^m)[/mm] und die Elemente aus [mm]\Phi(\mathcal{L}(\IR^m,\IR^m))[/mm] heißen lineare Vektorfelder, das sind also genau diejenigen Vektorfelder, die in den Standartkoordinaten die Form

[mm]X(p)=\sum_{i=1}^m \left(\sum_{j=1}^ma_{ij}\cdot p^j\right)\left.\frac{\partial}{\partial x^i}\right|_p[/mm]

haben. In diesem Falle ist [mm]A=(a_{ij})_{1\le i,j\le m}[/mm] die Darstellungsmatrix des linearen Vektorfeldes [mm]X[/mm] und [mm]X^\dagger[/mm] bezeichnet das lineare Vektorfeld mit der Darstellungsmatrix [mm]A^\dagger:=A^T[/mm]. Und jetzt noch ein Tipp für deine Aufgabe: Ist [mm]X^\dagger=X[/mm], heißt das, dass die Darstellungsmatrix des linearen Vektorfeldes diagonalisierbar ist, was habt ihr dazu in der Vorlesung gemacht?

Viele Grüße,
Robert



Bezug
                                                
Bezug
Vektorfeld in der Ebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:38 Mo 10.01.2011
Autor: Al-Chwarizmi


> Hallo,
>  
> Die Menge der glatten Vektorfelder [mm]\tau^1(\IR^m)[/mm] lässt
> sich auf kanonische Weise mit [mm]C^\infty(\IR^m,\IR^m)[/mm]
> identifizieren durch[mm]\Phi:C^\infty(\IR^m,\IR^m)\ni F\mapsto\left(p\mapsto\sum_{i=1}^mF^i(p)\left.\frac{\partial}{\partial x^i}\right|_p\right)\in\tau^1(M)[/mm]wobei
> [mm]x=\operatorname{id}_{\IR^m}[/mm] die Standart-Koordinaten auf
> [mm]\IR^m[/mm] sind.
>  Dieses [mm]\Phi[/mm] is ein linearer Isomorphismus von
> (unendlich-dimensionalen Vektorräumen). Nun ist ja die
> Menge [mm]\mathcal{L}(\IR^m,\IR^m)[/mm] der linearen Endomorphismen
> auf [mm]\IR^m[/mm] eine Teilmenge von [mm]C^\infty(\IR^m,\IR^m)[/mm] und die
> Elemente aus [mm]\Phi(\mathcal{L}(\IR^m,\IR^m))[/mm] heißen lineare
> Vektorfelder, das sind also genau diejenigen Vektorfelder,
> die in den Standartkoordinaten die Form
>  
> [mm]X(p)=\sum_{i=1}^m \left(\sum_{j=1}^ma_{ij}\cdot p^j\right)\left.\frac{\partial}{\partial x^i}\right|_p[/mm]
>  
> haben. In diesem Falle ist [mm]A=(a_{ij})_{1\le i,j\le m}[/mm] die
> Darstellungsmatrix des linearen Vektorfeldes [mm]X[/mm] und
> [mm]X^\dagger[/mm] bezeichnet das lineare Vektorfeld mit der
> Darstellungsmatrix [mm]A^\dagger:=A^T[/mm]. Und jetzt noch ein Tipp
> für deine Aufgabe: Ist [mm]X^\dagger=X[/mm], heißt das, dass die
> Darstellungsmatrix des linearen Vektorfeldes
> diagonalisierbar ist, was habt ihr dazu in der Vorlesung
> gemacht?
>  
> Viele Grüße,
>  Robert


Hallo Robert,

ich verstehe nicht, weshalb du auf die einfache Frage von
raubkaetzchen eine so geschwollene Antwort lieferst.

LG    Al-Chw.

Bezug
                                                        
Bezug
Vektorfeld in der Ebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:42 Mo 10.01.2011
Autor: pelzig

Weil die Frage auf meinem aktuellen "Analysis auf Mannigfaltigkeiten"-Blatt steht.

Gruß, Robert


Bezug
                                        
Bezug
Vektorfeld in der Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 19:45 Mo 10.01.2011
Autor: Al-Chwarizmi


> Hallo,
>  
> vielen Dank für den Hinweis Al-Chwarizmi.
>  Eine Frage habe ich dann noch. Woran liegt es, dass wir
> das Vektorfeld X als matrix schreiben können?
>  Ist das i.A. für Vektorfelder in [mm]\IR^n[/mm] möglich, oder ist
> mit "lineares Vektorfeld" genau diese Einschränkung auf
> Matrizen gemeint?


Ja, genau dies ist mit "lineares Vektorfeld" gemeint.

Speziell zur konkreten Aufgabe schau dir vielleicht noch

[]dies an !


LG     Al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de