www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Vektorfelder und Gradientenfel
Vektorfelder und Gradientenfel < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorfelder und Gradientenfel: Idee
Status: (Frage) beantwortet Status 
Datum: 14:41 Sa 17.11.2007
Autor: mabau-07

Aufgabe
Prüfe, ob und in welchem Gebiet die folgenden Vektorfelder  Gradientenfelder sind und berechne gebenenfalls eine zugehörige Potentialfunktion.
[mm] \overrightarrow{V}(\overrightarrow{x})=((2x-x^{2})z,x^{2}z,x^{2})e^{y-x} [/mm]

Zu dieser Aufgabe fehlt mir der Ansatz.
Wie gehe ich am besten vor ?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vektorfelder und Gradientenfel: Idee
Status: (Frage) überfällig Status 
Datum: 19:31 Sa 17.11.2007
Autor: mabau-07

So, ich habe mich mal etwas weiter an der Aufgabe versucht.
Habe erstmal folgendes festgelegt:
[mm] P=(2xz-x^{2}z)e^{y-x} [/mm]
[mm] Q=x^{2}ze^{y-x} [/mm]
[mm] R=x^{2}e^{y-x} [/mm]

Und dann bin ich die Integrabilitätsbedingung durchgegangen, also
Py=Qx , Pz=Rx , Qz=Ry
diese ist erfüllt !
Dann habe ich folgende Gleichung aufgestellt:

[mm] f(x,y,z)=\integral_{1}^{x}{P(t,0,0) dt}+\integral_{0}^{y}{Q(x,t,0) dt}+\integral_{0}^{z}{P(x,y,t) dt}+f(1,0,0) [/mm]
aufgestellt.
Ist mein Ansatz richtig ?


Bezug
                
Bezug
Vektorfelder und Gradientenfel: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:44 Mo 19.11.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Vektorfelder und Gradientenfel: Antwort
Status: (Antwort) fertig Status 
Datum: 22:18 Mo 19.11.2007
Autor: MatthiasKr

Hi,
> Prüfe, ob und in welchem Gebiet die folgenden Vektorfelder  
> Gradientenfelder sind und berechne gebenenfalls eine
> zugehörige Potentialfunktion.
>  
> [mm]\overrightarrow{V}(\overrightarrow{x})=((2x-x^{2})z,x^{2}z,x^{2})e^{y-x}[/mm]
>  Zu dieser Aufgabe fehlt mir der Ansatz.
>  Wie gehe ich am besten vor ?

ein notwendiges kriterium fuer die existenz einer potenzialfkt. ist doch, dass die rotation verschwindet (=0 ist). pruefe das doch erstmal nach.

um diese funktion zu bestimmen, versuche die einzelnen komponenten des VFs nach der jeweiligen variablen zu integrieren.

gruss
matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de