www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Vektorprodukt
Vektorprodukt < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorprodukt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:50 Mi 14.06.2006
Autor: annaL

Hallo!

Ich habe hier mal wieder eine Aufgabe aus dem Lambacher Schweizer Analytische Geometrie mit linearer Algebra, wo ich nicht wirklich weiter komme.

Und zwar soll bewiesen werden:

(a,b,c) = 0  [mm] \gdw [/mm] a,b,c sind linear abhängig. ( Das Vektorprodukt a,b,c, soll null sein! )

Linear abhängig bedeutet ja dass sich ein Vektor, z.b a als  Linearkombination der anderen darstellen lässt, z.B. a = b*c

Und (a,b,c) ist definiert als= (a*b) ( hier meine ich a kreuz b, also das Vektorprodukt ) * ( normale Multiplikation ) c

Aber ich habe keine Ahnung wie ich den Beweis führen könnte?

Danke!




        
Bezug
Vektorprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 12:23 Mi 14.06.2006
Autor: AT-Colt

Hallo annaL,

ich werde Vektoren durch einen Unterstrich kennzeichnen, dann ist "x" immer das Kreuzprodukt.

1.) Das Kreuzprodukt von zwei Vektoren steht senkrecht auf diesen Vektoren.

2.) Das Skalarprodukt zweier Vektoren ist genau dann 0, wenn beide Vektoren senkrecht aufeinander stehen.

Fangen wir mit der einfachen Richtung an:

"<=":
Seien [mm] $\underline{a}$, $\underline{b}$ [/mm] und [mm] $\underline{c}$ [/mm] linear abhängig, d.h. [mm] $\underline{c}$ [/mm] lässt sich darstellen als [mm] $\underline{c} [/mm] = [mm] \alpha\underline{a} [/mm] + [mm] \beta\underline{b}$. [/mm]

Setzen wir das einfach ein:

[mm] $(\underline{a},\underline{b},\underline{c}) [/mm] = [mm] (\underline{a}x\underline{b})\cdot(\alpha\underline{a}+\beta\underline{b}) [/mm] = [mm] \alpha(\underline{a}x\underline{b})\cdot\underline{a} [/mm] + [mm] \beta(\underline{a}x\underline{b})\cdot\underline{b}$ [/mm]

Nach 1.) steht [mm] $\underline{a}x\underline{b}$ [/mm] sowohl auf [mm] $\underline{a}$ [/mm] als auch auf [mm] $\underline{b}$ [/mm] senkrecht. Nach 2.) sind dann beide Produkte 0, also
[mm] $(\underline{a},\underline{b},\underline{c}) [/mm] = 0+0 = 0$


"=>"

Es gelte [mm] $(\underline{a},\underline{b},\underline{c}) [/mm] = 0$.
Angenommen, [mm] $\underline{a}$, $\underline{b}$ [/mm] und [mm] $\underline{c}$ [/mm] seien nicht abhängig.

Dann lässt sich [mm] $\underline{c}$ [/mm] nicht darstellen als [mm] $\alpha\underline{a}+\beta\underline{b}$, [/mm] sondern als (da wir im [mm] $\IR^3$ [/mm] sind: [mm] $\alpha\underline{a}+\beta\underline{b}+\gamma(\underline{a}x\underline{b})$ [/mm]
[mm] ($\gamma \not= [/mm] 0$)

Nun ist aber gerade
[mm] $(\underline{a},\underline{b},\underline{c}) [/mm] = [mm] (\underline{a}x\underline{b})\cdot\underline{c} [/mm] = [mm] \alpha(\underline{a}x\underline{b})\cdot\underline{a}+\beta(\underline{a}x\underline{b})\cdot\underline{b}+\gamma(\underline{a}x\underline{b})\cdot(\underline{a}x\underline{b}) [/mm] = 0 + 0 + [mm] \gamma(\underline{a}x\underline{b})\cdot(\underline{a}x\underline{b}) \not= [/mm] 0$

Was ein Widerspruch zur Voraussetzung [mm] $(\underline{a},\underline{b},\underline{c}) [/mm] = 0$ ist.

greetz

AT-Colt

Bezug
                
Bezug
Vektorprodukt: Vektor
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:39 Mi 14.06.2006
Autor: Herby

Hallo AT-Colt,


warum nimmst du [mm] \text{\\underline}\{ a\} [/mm] und nicht [mm] \text{\\vec}\{a\} [/mm]

in der Darstellung [mm] \underline{a} [/mm] vs. [mm] \vec{a} [/mm]


Liebe Grüße
Herby

Bezug
                        
Bezug
Vektorprodukt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:00 Mi 14.06.2006
Autor: AT-Colt

Schlechte Angewohnheit aus der theoretischen Physik, nicht steinigen bitte ^^;

Zugegebenermaßen wäre vec aber kürzer :P

greetz

AT-Colt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de