www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Vektorprodukt
Vektorprodukt < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorprodukt: Rechtssystem bei Vektorprodukt
Status: (Frage) beantwortet Status 
Datum: 16:40 Sa 17.06.2006
Autor: Eschi

Aufgabe
Drei (paarweise nicht parallele) Vektoren im [mm] R^3 [/mm] definieren einen Tetraeder. Zeigen Sie: Wird jeder der vier Tetraederflächen ein "nach außen" zeigender Normalenvektor (d.h. ein auf der jeweiligen Fläche senkrecht stehender Vektor) zugeordnet, dessen Länge dem jeweiligen Flächeninhalt entspricht, so verschwindet die Summe dieser 4 Vektoren. Hinweis: Beachten Sie die Rechtsystemeigenschaft des Vektorproduktes!  

Hallo. Ich weiß das ich da irgendwas mit dem Kreuzprodukt allgemein schreiben muss, aber ich bekomme nur lange umformungen hin. Kann mir einer mal eine Lösung anbieten!

Ich danke Euch







Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vektorprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 19:22 Sa 17.06.2006
Autor: Leopold_Gast

Nimm an, daß die das Tetraeder aufspannenden Vektoren [mm]\vec{x},\vec{y},\vec{z}[/mm] ein Rechtssystem bilden. Bekanntermaßen berechnet [mm]\frac{1}{2} \, \left| \vec{x} \times \vec{z} \right|[/mm] den Flächeninhalt der von [mm]\vec{x},\vec{z}[/mm] aufgespannten Dreiecksfläche. Die Vektoren [mm]\vec{x},\vec{z}, \frac{1}{2} \, \vec{x} \times \vec{z}[/mm] bilden ein Rechtssystem. Folglich zeigt [mm]\frac{1}{2} \vec{x} \times \vec{z}[/mm] nach außen (ansonsten hätten wir [mm] \vec{x},\vec{z} [/mm] vertauschen müssen). Es ist also der erste gesuchte Vektor.

[Dateianhang nicht öffentlich]

Und jetzt finde analog die anderen drei. Vorsicht! Hier kommt es entscheidend auf die Reihenfolge der Faktoren beim Vektorprodukt an!

Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
Bezug
                
Bezug
Vektorprodukt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:29 So 18.06.2006
Autor: Eschi

Danke für die Hilfe, aber ich stehe momentan nebenmir was deine Antwort betrifft.  Was ist den jetzt der eigentliche Vektor?, kannst du deinen Weg bitte nochmal ausführlicher beschreiben? Danke

Bezug
                        
Bezug
Vektorprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 19:03 So 18.06.2006
Autor: Leopold_Gast

[mm]\frac{1}{2} \, \vec{x} \times \vec{z}[/mm] ist der Vektor, der auf der linken vorderen Seite des Tetraeders senkrecht steht, nach außen zeigt (also nicht in das Tetraeder hinein) und genau die Maßzahl als Länge hat, die die Dreiecksfläche als Inhalt besitzt (dafür sorgt der Faktor [mm]\frac{1}{2}[/mm], der ansonsten unwichtig ist).

Ich mache noch einen Teil der Aufgabe für dich, den Rest solltest du aber selbst erledigen.

Wie sieht der Vektor aus, der auf der Grundseite des Tetraeders, also der von [mm]\vec{x} ,\vec{y}[/mm] aufgespannten Dreiecksseite, senkrecht steht und die weiteren geforderten Eigenschaften besitzt?

In Frage kommen [mm]\vec{x} \times \vec{y}[/mm] oder [mm]\vec{y} \times \vec{x}[/mm]. Um die Länge kümmern wir uns vorerst nicht.

[mm]\vec{x},\vec{y},\vec{x} \times \vec{y}[/mm] bilden ein Rechtssystem (das ist immer so). Du mußt jetzt das Dreibein mit den umkreisten 1,2,3 so in die Figur hineindenken, daß der Vektor 1 auf [mm]\vec{x}[/mm] und der Vektor 2 auf [mm]\vec{y}[/mm] fällt. Und dann siehst du, daß der Kreuzproduktvektor nach oben zeigt, also in das Tetraeder hinein. Damit ist [mm]\vec{x} \times \vec{y}[/mm] der falsche Vektor. Richtig ist also [mm]\vec{y} \times \vec{x}[/mm] oder gleichbedeutend [mm]- \vec{x} \times \vec{y}[/mm] (wenn du jetzt das Dreibein in die Figur legst, muß 1 wie [mm]\vec{y}[/mm] und 2 wie [mm]\vec{x}[/mm] zeigen, du mußt es also um 180° drehen). Und mit der entsprechenden Länge ist dann

[mm]\frac{1}{2} \, \vec{y} \times \vec{x} = - \frac{1}{2} \, \vec{x} \times \vec{y}[/mm]

der gesuchte Vektor.

Und mit der Rückseite des Tetraeders, die von den Vektoren [mm]\vec{y},\vec{z}[/mm], und der rechten vorderen Seite, die von den Vektoren [mm]\vec{y} - \vec{x}, \vec{z} - \vec{x}[/mm] aufgespannt wird, geht es entsprechend. Wenn die eine Reihenfolge beim Kreuzprodukt nicht die richtige ist, muß es halt die andere sein.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de