Vektorräume < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:42 Di 11.12.2007 | Autor: | Tyskie84 |
Aufgabe |
V,W seien endlichdimensionale VR über [mm] \IK
[/mm]
1. Eine lineare Abbildung f: V [mm] \to [/mm] W ist genau dann injektiv, wenn Kerf = {0}
2. Für f: V [mm] \to [/mm] W linear gilt: dimV=dimKerf - rangf
3. Eine lineare Abbildung f: V [mm] \to [/mm] W ist genau dann injektiv, wenn sie surjektiv ist.
4. Für A [mm] \in [/mm] M( m [mm] \times [/mm] n, [mm] \IK) [/mm] gilt: rangA [mm] \le [/mm] m
5. Für A [mm] \in [/mm] M( m [mm] \times [/mm] n, [mm] \IK) [/mm] gilt: rangA [mm] \ge [/mm] n
6. Für A [mm] \in [/mm] M( m [mm] \times [/mm] n, [mm] \IK) [/mm] gilt: rangA [mm] \le [/mm] n |
Hallo zusammen. Muss diese multiple choice aufgaben beantworten.
Zu 1)
f injektiv [mm] \Rightarrow [/mm] Kerf = {0}: es gibt ja nur ein Element das auf die 0 abbildet und das ist die 0 selbst
Kerf = {0} [mm] \Rightarrow [/mm] f injektiv: x,y [mm] \in [/mm] V geg mit f(x)=f(y) Dann f(x-y) = f(x)-f(y)=0 [mm] \Rightarrow [/mm] x-y = 0 [mm] \in [/mm] Kerf = {0}
[mm] \Rightarrow [/mm] x=y
Damit ist 1 WAHR
Zu 2) Das ist FALSCH denn damit wäre die Dimensionsforlel nicht erfüllt.
Zu 3) f ist bijektiv [mm] \gdw [/mm] f ist injektiv [mm] \gdw [/mm] fist surjektiv. Das gilt in endlichdimensionalen Vektorräumen damit ist die Aussage WAHR
Zu 4) 5) und 6)
der Rang von A = dimIm(A) hier ist 4 und 6 WAHR die 5 ist FALSCH
denn der RangA [mm] \le [/mm] min{m,n} auch nach der Dimensionsformel gilt RangA= dim [mm] \IK^{n} [/mm] - dimKerA [mm] \le [/mm] n und ImA [mm] \subset \IK^{m} \Rightarrow [/mm] RangA [mm] \le [/mm] m
Ist das richtig so??
Gruß
|
|
|
|
> Ist das richtig so??
Ja.
Gruß v. Angela
|
|
|
|