www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Vektorräume
Vektorräume < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorräume: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:47 Sa 01.05.2010
Autor: blumich86

Aufgabe
Überprüfen Sie, ob die Menge V zusammen mit der für den Vektorraum [mm] \IR^3 [/mm] definierten Addition und Multiplikation ein Vektorraum ist.

c) V= { [mm] \vektor{a \\ a^2 \\ a^3} [/mm] | [mm] a\varepsilon \IR [/mm] }

Hallo,

warum ist diese Menge kein Vektorraum???

lg blumich

        
Bezug
Vektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 12:49 Sa 01.05.2010
Autor: ChopSuey

Hallo,

> Überprüfen Sie, ob die Menge V zusammen mit der für den
> Vektorraum [mm]\IR^3[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

definierten Addition und Multiplikation

> ein Vektorraum ist.
>  
> c) V= { [mm]\vektor{a \\ a^2 \\ a^3}[/mm] | [mm]a\varepsilon \IR[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

}

>  Hallo,
>  
> warum ist diese Menge kein Vektorraum???

Woher weisst du denn, dass das keiner ist?

Du wirst vermutlich die Vektorraumaxiome geprüft haben.

Zeig' mal, was du so machst.

>  
> lg blumich

ChopSuey

Bezug
                
Bezug
Vektorräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:58 Sa 01.05.2010
Autor: blumich86

also, in unsere Lösung gehen wir so vor:

[mm] \vektor{a \\ a^2 \\ a^3} [/mm] + [mm] \vektor{b \\ b^2 \\ b^3} [/mm] = [mm] \vektor{a+b \\ a^2+b^2 \\ a^3+b^3} \not= \vektor{a+b \\ (a+b)^2 \\ (a+b)^3} [/mm]

obwohl ich ja nicht verstehe, warum man [mm] +\vektor{b \\ b^2 \\ b^3} [/mm] rechnet und warum man sagt, [mm] \vektor{a+b \\ a^2+b^2 \\ a^3+b^3} \not= \vektor{a+b \\ (a+b)^2 \\ (a+b)^3} [/mm]

natürlich ist das Ungleich, aber warum setzt man das Ungleich??

Bezug
                        
Bezug
Vektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 13:09 Sa 01.05.2010
Autor: qsxqsx


Du untersuchst es ja so quasi auf Linearität(!). Es ist halt so definiert,dass es linear sein muss.

Sehe mal (a+b) als eine Zahl c, also a+b=c.

Du willst wissen, ob wenn du die beiden Vektoren [mm] \vektor{a \\ a^{2} \\ a^{3}} [/mm] und [mm] \vektor{b \\ b^{2} \\ b^{3}} [/mm] addierst, das gleiche herauskommt wie wenn du zuerst(!) a+b rechnest bzw. ob [mm] \vektor{c \\ c^{2} \\ c^{3}} [/mm] = [mm] \vektor{a \\ a^{2} \\ a^{3}} [/mm] + [mm] \vektor{b \\ b^{2} \\ b^{3}} [/mm]

Gruss

Bezug
                                
Bezug
Vektorräume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:12 Sa 01.05.2010
Autor: ChopSuey

Hallo,

nicht linearität, sondern Abgeschlossenheit bezüglich Addition.

Grüße
ChopSuey

Bezug
                                        
Bezug
Vektorräume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:25 Sa 01.05.2010
Autor: qsxqsx

Sorry...

Aber sagmal, linearität ist doch auch so definiert? (Und hald, dass man einen Faktor aus einer Funktion herausziehen kann.)

Gruss

Bezug
                                                
Bezug
Vektorräume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:27 Sa 01.05.2010
Autor: ChopSuey

Hallo,

ich sehe keine Funktion.

Du sprichst von []linearen Abbildungen.

Grüße
ChopSuey

Bezug
                                
Bezug
Vektorräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:22 Sa 01.05.2010
Autor: blumich86

Aufgabe
Welche dieser Teilmenge des [mm] \IR^2 [/mm] ist zusammen mit der für den Vektorraum [mm] \IR^3 [/mm] definierten Addition und Multiplikation jeweils ein Vektorraum

A= { [mm] \vektor{x_1 \\ x_2} [/mm] | [mm] x_1 [/mm] + [mm] x_2 [/mm] =0 }

B= { [mm] \vektor{x_1 \\ x_2} [/mm] | [mm] x_1 [/mm] + [mm] x_2 [/mm] =1 }  

Klasse, diese Aufgabe habe ich verstanden!!!! Vielen Dank!!
Nur mit der nächsten komme ich nicht klar.

[mm] \vektor{x_1 \\ x_2} [/mm] + [mm] \vektor{y_1 \\ y_2} [/mm] = [mm] \vektor{x_1 + y_1 \\ x_2 + y_2} \in [/mm] A

weil [mm] x_1 [/mm] + [mm] x_2 [/mm] = 0 und [mm] y_1 [/mm] + [mm] y_2 [/mm] =0

[mm] x_1 [/mm] + [mm] x_2 [/mm] + [mm] y_1 [/mm] + [mm] y_2 [/mm] =0

Warum ist den [mm] y_1 [/mm] + [mm] y_2 [/mm] =0????  Und darf man rein mathematisch [mm] x_1 [/mm] + [mm] x_2 [/mm] + [mm] y_1 [/mm] + [mm] y_2 [/mm] =0, dass so schreiben??


Bezug
                                        
Bezug
Vektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 13:25 Sa 01.05.2010
Autor: ChopSuey

Hallo,

das selbe, wie bei deiner ersten Aufgabe.

Ein Vektorraum muss bezüglich Addition und Multiplikation abgeschlossen sein !!

Warum ist $\ B $ bezüglich Addition und Multiplikation nicht abgeschlossen?

Prüfe das !

Grüße
ChopSuey

Bezug
                                                
Bezug
Vektorräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:33 Sa 01.05.2010
Autor: blumich86

mmhh, ich glaube so langsam verstehe ich das.

Für B gilt dann: [mm] \vektor{x_1 \\ x_2} [/mm] + [mm] \vektor{y_1 \\ y_2} [/mm] = [mm] \vektor{x_1 + y_1 \\ x_2 + y_2} \not\in [/mm] B

weil: [mm] x_1+x_2=1 [/mm] und [mm] y_1+y_2=1 [/mm]  => [mm] x_1+x_2 [/mm] + [mm] y_1+y_2=2[/mm]

Bezug
                                                        
Bezug
Vektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 13:42 Sa 01.05.2010
Autor: schachuzipus

Erst lesen, dann fragen!

Siehe unten!

Gruß

Bezug
                                                        
Bezug
Vektorräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:50 Sa 01.05.2010
Autor: blumich86

Aufgabe
Welche dieser Teilmengen des [mm] \IR^2 [/mm] ist zusammen mit der für den Vektorraum [mm] \IR^2 [/mm] definierten Addition und Multiplikation jeweils ein Vektorraum.

D= { [mm] \vektor{x_1 \\ x_2} [/mm] | [mm] x_1 [/mm] * [mm] x_2= [/mm] 0 }

[mm] \vektor{x_1 \\ x_2} [/mm] + [mm] \vektor{y_1 \\ y_2} [/mm] = [mm] \vektor{x_1+y_1 \\ x_2+y_2} [/mm]

[mm] (x_1+y_1) [/mm] * [mm] (x_2+y_2) [/mm] =...

Darf man dieses Zwei Zeilen miteinander multiplizieren???

Bezug
                                                                
Bezug
Vektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 14:00 Sa 01.05.2010
Autor: schachuzipus

Hallo nochmal,

> Welche dieser Teilmengen des [mm]\IR^2[/mm] ist zusammen mit der
> für den Vektorraum [mm]\IR^2[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

definierten Addition und

> Multiplikation jeweils ein Vektorraum.
>  
> D= { [mm]\vektor{x_1 \\ x_2}[/mm] | [mm]x_1[/mm] * [mm]x_2=[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

0 }

>  [mm]\vektor{x_1 \\ x_2}[/mm] + [mm]\vektor{y_1 \\ y_2}[/mm] =
> [mm]\vektor{x_1+y_1 \\ x_2+y_2}[/mm]



>
> [mm](x_1+y_1)[/mm] * [mm](x_2+y_2)[/mm] =...
>  
> Darf man dieses Zwei Zeilen miteinander multiplizieren???

Ja natürlich, das müsste dann  für die Gültigkeit der Abgeschlossenheit auch 0 ergeben, tut es aber im Allgemeinen offensichtlich nicht

Viel schneller bist du mit einem Gegenbsp. fertig.

Du solltest allein aufgrund der Multiplikation in der Definition schon daran denken, dass es wohl kein VR sein wird.

Es ist ja [mm] $x_1x_2=0\gdw x_1=0 [/mm] \ [mm] \text{oder} [/mm] \ [mm] x_2=0$ [/mm]

Was ist mit [mm] $\vec{x}=\vektor{1\\0}$ [/mm] und [mm] $\vec{y}=\vektor{0\\1}$ [/mm]

Die liegen beide drin, da sowohl [mm] $1\cdot{}0=0$ [/mm] also auch [mm] $0\cdot{}1=0$ [/mm]

Wie sieht's mit deren Summe aus?

Das wäre der schnelle Weg.

Mache das aber auch mal allg. weiter nach deinem Weg und zeige, dass bei dem Produkt der Komponenten des Summenvektors nicht immer 0 rauskommen muss.


Gruß

schachuzipus


Bezug
                                        
Bezug
Vektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 13:32 Sa 01.05.2010
Autor: schachuzipus

Hallo blumich86,

> Welche dieser Teilmenge des [mm]\IR^2[/mm] ist zusammen mit der für
> den Vektorraum [mm]\IR^3[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

definierten Addition und

> Multiplikation jeweils ein Vektorraum
>  
> A= { [mm]\vektor{x_1 \\ x_2}[/mm] | [mm]x_1[/mm] + [mm]x_2[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

=0 }

>
> B= { [mm]\vektor{x_1 \\ x_2}[/mm] | [mm]x_1[/mm] + [mm]x_2[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

=1 }

> Klasse, diese Aufgabe habe ich verstanden!!!! Vielen
> Dank!!
>  Nur mit der nächsten komme ich nicht klar.
>  
> [mm]\vektor{x_1 \\ x_2}[/mm] + [mm]\vektor{y_1 \\ y_2}[/mm] = [mm]\vektor{x_1 + y_1 \\ x_2 + y_2} \in[/mm]
> A
>  
> weil [mm]x_1[/mm] + [mm]x_2[/mm] = 0 und [mm]y_1[/mm] + [mm]y_2[/mm] =0
>  
> [mm]x_1[/mm] + [mm]x_2[/mm] + [mm]y_1[/mm] + [mm]y_2[/mm] =0
>
> Warum ist den [mm]y_1[/mm] + [mm]y_2[/mm] =0????

Na, das ist doch genau die definierende Eigenschaft von Vektoren, die in der Menge A sind aus.

> Und darf man rein
> mathematisch [mm]x_1[/mm] + [mm]x_2[/mm] + [mm]y_1[/mm] + [mm]y_2[/mm] =0, dass so schreiben??
>  

Nun, es werden 2 Vektoren [mm] $\vec{x}=\vektor{x_1\\x_2}$ [/mm] und [mm] $\vec{y}=\vektor{y_1\\y_2}\in [/mm] A$ hergenommen.

Das bedeutet nach der Def. von A:

(1) [mm] $x_1+x_2=0$ [/mm] (da [mm] $\vec{x}\in [/mm] A$)

(2) [mm] $y_1+y_2=0$ [/mm] (da [mm] $\vec{y}\in [/mm] A$)

Nun will man zeigen, dass auch [mm] $\vec{x}+\vec{y}=\vektor{x_1+y_1\\x_2+y_2}\in [/mm] A$ ist.

Dazu müsste gelten: [mm] $(x_1+y_1)+(x_2+y_2)=0$ [/mm] (denn so ist A definiert!)

Aber das kannst du in leichter Weise aus den Gleichungen (1) und (2) folgern?

Addiere (2) auf (1) ...

Gruß

schachuzipus
A

Bezug
                        
Bezug
Vektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 13:19 Sa 01.05.2010
Autor: ChopSuey

Hallo,

$\ a, b [mm] \in [/mm] V [mm] \Rightarrow [/mm] a+b [mm] \in [/mm] V $

$\ a =  [mm] \vektor{a \\ a^2 \\ a^3} [/mm] $, $\ b =  [mm] \vektor{b \\ b^2 \\ b^3} [/mm] $

Rechne $\ a + b $ und entscheide, ob die Summe in $\ V $ liegt. Wie Elemente aus $\ V $ aussehen, weisst du.

Grüße
ChopSuey





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de