www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Vektorräume/Unterräume
Vektorräume/Unterräume < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorräume/Unterräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:01 So 13.11.2011
Autor: fe11x

Aufgabe
Es seien K ein Körper und N [mm] \subset [/mm] M Mengen. Zeige im Vektorraum [mm] K^M [/mm] ist die Menge aller Funktionen, die allen bzw. fast allen Elementen von N den Skalar 0 [mm] \in [/mm] K zuordnen, ein Unterraum U1 bzw U2.  Dabei gilt U1 [mm] \subset [/mm] U2

kann mir bitte jemand bei dieser aufgabe weiterhelfen.
ich tu mir schon dabei schwer, zu verstehen was ich hier eigentlich machen soll.

mfg
felix

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vektorräume/Unterräume: Antwort
Status: (Antwort) fertig Status 
Datum: 12:02 So 13.11.2011
Autor: angela.h.b.


> Es seien K ein Körper und N [mm]\subset[/mm] M Mengen. Zeige im
> Vektorraum [mm]K^M[/mm] ist die Menge aller Funktionen, die allen
> bzw. fast allen Elementen von N den Skalar 0 [mm]\in[/mm] K
> zuordnen, ein Unterraum U1 bzw U2.  Dabei gilt U1 [mm]\subset[/mm]
> U2
>  kann mir bitte jemand bei dieser aufgabe weiterhelfen.
>  ich tu mir schon dabei schwer, zu verstehen was ich hier
> eigentlich machen soll.

Hallo,

[willkommenmr].

Am besten schreibst Du erstmal auf, wie [mm] K^M [/mm] definiert ist, denn das muß man ja auf jeden Fall wissen, wenn man die Aufgabe lösen möchte.

[mm] K^M:= [/mm] ...

[mm] U_1:=\{f\in K^M| f(x)=0 f.a. x\in N\}, [/mm]
[mm] U_2:=\{f\in K^M| f(x)\not=0 für endlich viele x\in N\}. [/mm]

Daß [mm] U_1\subseteq U_2, [/mm] dürfte klar sein.

Zeigen sollst Du nun, daß [mm] U_1 [/mm] und [mm] U_2 [/mm] Unterräume von [mm] K^M [/mm] sind.
Was ist dafür zu zeigen? (Unterraumkriterien?)

Gruß v. Angela


Bezug
                
Bezug
Vektorräume/Unterräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:16 So 13.11.2011
Autor: fe11x

[mm] K^M [/mm] ist definiert als die Menge aller Funktionen von M nach K. oder?

was ist mit "fast allen elementen gemeint"?
ich weiß ja nicht ob N eine echte teilmenge von M ist. spielt das eine rolle?

Bezug
                        
Bezug
Vektorräume/Unterräume: Antwort
Status: (Antwort) fertig Status 
Datum: 12:47 So 13.11.2011
Autor: angela.h.b.


> [mm]K^M[/mm] ist definiert als die Menge aller Funktionen von M nach
> K. oder?

<hallo,

ja.

>  
> was ist mit "fast allen elementen gemeint"?

alle bis auf endlich viele.
Wenn f an fast allen Stellen =0 sein soll, dann gibt es nur endlich viele Stellen, an denen die Funktion [mm] \not=0 [/mm] ist.

>  ich weiß ja nicht ob N eine echte teilmenge von M ist.
> spielt das eine rolle?

Ich denke nicht.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de