www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Vektorraum
Vektorraum < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorraum: Erklärung Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:05 Mi 14.09.2016
Autor: PeterSteiner

Aufgabe
Zeigen Sie, dass die Menge der Polynome vom Grade=n kein Vektorraum und somit kein Unterraum des Vektorraums der Polynome beliebigen Grades ist.

Lösung:

Pn = [mm] \{p(x) =\summe_{i=1}^{n}a_{i}x^{i}|a_{n}\in\IR\backslash 0, a_{i} \in \IR \} [/mm]

Man beachte der Koeffizient [mm] a_{n}\not= [/mm] 0 da ansonsten der Polynomgrad =n wäre

Es seien p1(x)= [mm] x^{n}+1 [/mm] und p2 = [mm] -x^{n}+1 [/mm] Dann gilt

p1(x),P2(x) [mm] \in [/mm] Pn aber p1(x)+p2(x)= [mm] 2\in [/mm] Pn und somit ist Pn kein Vektorraum

Kann mir bitte jemand Laihenhaft erklären wie ich auf p1 und p2 komme?
Generell fehlt mir das Verständniss dieser Lösung. Könnte mir jemand bitte helfen und es mir Schritt für Schritt erklären?
Damit es ein Vektorraum ist muss folgendes gelten:

Abgeschlossenheit
Kommutativität
Assoziativität

Bitte dringend um Hilfe!

Vielen Dank!


        
Bezug
Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 21:37 Mi 14.09.2016
Autor: chrisno

Für das Verständnis wichtig ist, dass Du den Fehler im folgenden Satz korrigierst:

> Man beachte der Koeffizient $ [mm] a_{n}\not= [/mm] $ 0 da ansonsten der Polynomgrad =n wäre.

> Kann mir bitte jemand Laihenhaft erklären wie ich auf p1 und p2 komme?

Von der Fragestellung her ist das Ziel zu zeigen, dass ein Vektorraumaxiom verletzt ist. Dafür muss ein Beispiel gefunden werden. Da gilt es kreativ zu sein. Die angegebenen Polynome sind nur zwei von beliebig vielen Möglichkeiten.

Ich hätte spontan nach dem neutralen Element der Addition gesucht. Wie muss das aussehen? Das ist ganz klar auch kein Polynom vom Grad n.

Deine Angaben, was für einen Vektorraum so gelten muss, sind etwas sparsam.

Bezug
                
Bezug
Vektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:47 Mi 14.09.2016
Autor: PeterSteiner

Danke für die Antwort, so ganz Klick gemacht hat es leider immer noch nicht.
Könntest du mir ein Beispiel geben wie in meinem Fall das neutrale Element verletzt wird?

Bezug
                        
Bezug
Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 21:52 Mi 14.09.2016
Autor: chrisno

Was ist die Definition des neutralen Elements? Welches Polynom ist das?



Bezug
                                
Bezug
Vektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:58 Mi 14.09.2016
Autor: PeterSteiner

X+0= 0+x=X

Ein polymon ersten Grades?
Aber gehören Polynome dessen grad größer als 1 ist nicht zu einem Vektorraum?
Mit grad n ist doch gemeint n= 1,2,3....

Bezug
                                        
Bezug
Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 23:33 Mi 14.09.2016
Autor: meili

Hallo,

leider finden sich in der Lösung in deinem ersten Post einige sinnentstellende
Tippfehler. Es müsste heißen:

Pn = $ [mm] \{p(x) =\summe_{i=0}^{n}a_{i}x^{i}|a_{n}\in\IR\backslash 0, a_{i} \in \IR \} [/mm] $

Man beachte der Koeffizient $ [mm] a_{n}\not= [/mm] $ 0, da ansonsten der Polynomgrad [mm] $\not=$ [/mm] n wäre.

p1(x),p2(x) $ [mm] \in [/mm] $ Pn aber p1(x)+p2(x)= $ [mm] 2\notin [/mm] $ Pn und somit ist Pn kein Vektorraum.

> X+0= 0+x=X

[ok]

>  
> Ein polymon ersten Grades?

Das neutrale Element ist das Polynom $p(x) [mm] \equiv [/mm] 0$ vom Grad [mm] $-\infty$. [/mm]

> Aber gehören Polynome dessen grad größer als 1 ist nicht
> zu einem Vektorraum?
>   Mit grad n ist doch gemeint n= 1,2,3....

Es soll die Menge der Polynome vom Grad n untersucht werden, dazu gehören
nur Polynome die genau den Grad n haben.
n ist zwar beliebig, aber fest.

Würde man die Menge der Polynome vom Grad [mm] $\le$ [/mm] n betrachten,
kommt man zu einem anderen Ergebnis bezüglich Vektorraum.

Gruß
meili

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de