www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Vektorraum + l.a. oder l.u.
Vektorraum + l.a. oder l.u. < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorraum + l.a. oder l.u.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:43 Mo 17.01.2005
Autor: Becks

In einem Vektorraum V über K = [mm] \IR [/mm] seien die Vektoren a,b,c gegeben. Ferner seien:

r := b + c,       s := c + a,        t := a + b

Zu zeigen:
a) [{a,b,c}] = [{r,s,t}]
b) a,b,c sind genau linear unabhängig, wenn r,s,t linear unabhängig sind.

Da weiß ich nichts mit anzufangen, weil ich mich nicht soo mit Vektoren auskenne. Gibt es da irgendeinen Satz, den man anwenden kann?
Ich glaub die Mathevorlesung muss ich nochmal hören :-/
Ìch hoffe ihr könnt mir etwas helfen.

danke mfg becks

        
Bezug
Vektorraum + l.a. oder l.u.: Antwort
Status: (Antwort) fertig Status 
Datum: 22:50 Mo 17.01.2005
Autor: Micha

Hallo Becks!
> In einem Vektorraum V über K = [mm]\IR[/mm] seien die Vektoren a,b,c
> gegeben. Ferner seien:
>  
> r := b + c,       s := c + a,        t := a + b
>  
> Zu zeigen:
>  a) [{a,b,c}] = [{r,s,t}]
>  b) a,b,c sind genau linear unabhängig, wenn r,s,t linear
> unabhängig sind.
>  
> Da weiß ich nichts mit anzufangen, weil ich mich nicht soo
> mit Vektoren auskenne. Gibt es da irgendeinen Satz, den man
> anwenden kann?

Ich gehe mal davon aus, dass du bei a) jeweils den von den Vektoren aufgespannten Raum meinst...

Was muss man bei a) zeigen? nun für jedes v aus [{a,b,c}] gibt es eine Linearkombination aus diesen Basisvektoren:

[mm] $\exists \alpha [/mm] , [mm] \beta [/mm] , [mm] \gamma \in [/mm] K : v = [mm] \alpha [/mm] a + [mm] \beta [/mm] b + [mm] \gamma [/mm] c$

Nun musst du zeigen, dass man dieses v auch in [{r,s,t}] mit jeweis anderen Koeffizienten darstellen kann.
Dann hast du gezeigt, dass [mm] $[\{a,b,c\}] \subseteq [\{r,s,t\}]$ [/mm] Wenn du nun noch die Gegenrichtung zeigst, dann folgt die Gleichheit. Gegenrichtung heißt: Jedes w aus [{r,s,t}] ist in [{a,b,c}] darstellbar...

Für Teil b) musst du noch einmal die Definition von linearer Unabhängigkeit heranziehen: [{a,b,c}] ist linear unabhängig, wenn die 0 nur trivial darstellbar ist, also:

$(0  = [mm] \alpha [/mm] a + [mm] \beta [/mm] b + [mm] \gamma [/mm] c) [mm] \Rightarrow (\alpha [/mm] = [mm] \beta [/mm] = [mm] \gamma [/mm] = 0)$ , also dass alle Koeffizienten Null sind.

Dann schaust, du was mit der Darstellung in der zweiten Menge passiert und du erhälst ein lineares Gleichungssystem, was nicht schwer zu lösen ist und aus dem folgt, dass die Koeffizienten in der zweiten Menge auch immer 0 sein müssen für die Darstellung der 0 als Vektor...

Frag nochmal nach, wenn etwas unklar geblieben ist!

Gruß, Micha ;-)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de