www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Vektorraum Bedingung
Vektorraum Bedingung < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorraum Bedingung: Idee
Status: (Frage) beantwortet Status 
Datum: 12:53 Do 16.02.2012
Autor: Coup

Aufgabe
(i) K = F2
(ii) Für jeden endlich erzeugten K-Vektorraum V ist die Anzahl der Elemente von V eine Zahl der Form [mm] 2^m, [/mm] m ganz


Hi,
Also aus (i) folgt (ii) stimmt wohl. Aber ich kann es nicht erklären.
Ich befinde mich ja im F2 und habe nur die Elemente 1,0.
Warum hat dann die Anzahl der Elemente V diese Form [mm] 2^m [/mm] ?
Die Rückrichtung dürfte nicht stimmen

lg
Flo

        
Bezug
Vektorraum Bedingung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:02 Do 16.02.2012
Autor: fred97


> (i) K = F2
>  (ii) Für jeden endlich erzeugten K-Vektorraum V ist die
> Anzahl der Elemente von V eine Zahl der Form [mm]2^m,[/mm] m ganz



Was ist denn hier die Aufgabe ? Sollst Du zeigen (i) [mm] \gdw [/mm] (ii) ? Sollst Du zeigen, dass aus (i) die Aussage (ii) folgt (und (oder) umgekehrt)

Also: gibt die genaue Aufgabenstellung an.

FRED

>  Hi,
>  Also aus (i) folgt (ii) stimmt wohl. Aber ich kann es
> nicht erklären.
>  Ich befinde mich ja im F2 und habe nur die Elemente 1,0.
>  Warum hat dann die Anzahl der Elemente V diese Form [mm]2^m[/mm] ?
>  Die Rückrichtung dürfte nicht stimmen
>  
> lg
>  Flo


Bezug
                
Bezug
Vektorraum Bedingung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:26 Do 16.02.2012
Autor: Coup

aus (i) folgt (ii) und umgekehrt ja

Bezug
                        
Bezug
Vektorraum Bedingung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:43 Do 16.02.2012
Autor: fred97


> aus (i) folgt (ii) und umgekehrt ja

Zu (i) [mm] \Rightarrow [/mm] (ii):

Nimm an V wird durch die linear unabh. Menge [mm] \{b_1, ..., b_m\} [/mm] erzeugt. Die Elemente von V sehen dann so aus:

           (*)       [mm] t_1b_1+...+t_nb_n, [/mm]

wobei [mm] t_j \in \{0,1\}. [/mm]


Wieviel Elemente der Form (*) gibt es dann ?

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de