www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Vektorraum Teilmenge Abbildung
Vektorraum Teilmenge Abbildung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorraum Teilmenge Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:39 Di 05.04.2011
Autor: kushkush

Aufgabe
Seien [mm] $V_{1}=\IR(1,0)$ [/mm] und [mm] $V_{2}=\IR(\epsilon, [/mm] n)$ in [mm] $\IR^{2}$ [/mm] mit $n [mm] \ne [/mm] 0$.

a) Man finde $a,b$ so dass [mm] $f(V_{1})\subset V_{1}$ [/mm] und [mm] $f(V_{2}) \subset (V_{2})$ [/mm] für die f mit Matrix [mm] $\vektor{1&b \\ c& 0}$ [/mm]

Hallo,



Die Bedingung [mm] $f(V_{1})\subset V_{1}$ [/mm] und [mm] $f(V_{2}) \subset (V_{2})$ [/mm] wird sicher erfüllt, wenn es sich bei der Abbildung um eine Drehung handelt. Aber das kann ich hier nicht machen.

also rechne ich weil gilt:  [mm] $$f(V_{1})= V_{1} \Rightarrow f(V_{1})\subset V_{1}$: $\vektor{1&b\\c&0} \vektor{1\\0}= \vektor{1\\c}$ [/mm] Also wäre $c=0$


dasselbe mit [mm] $f(V_{2})= V_{2} \Rightarrow f(V_{1})\subset V_{1}$ [/mm] geht aber nicht und daher stecke ich fest.

Wie komme ich weiter?



Ich habe diese Frage in keinem anderen Forum gestellt.

Danke und Gruss
kushkush

        
Bezug
Vektorraum Teilmenge Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:34 Di 05.04.2011
Autor: leduart

Hallo
da auch (0,0) in V2 ist, bild halt V2 nicht auf V2 sondern auf 0 ab.
Gruss leduart


Bezug
                
Bezug
Vektorraum Teilmenge Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:29 Di 05.04.2011
Autor: kushkush

Hallo

(0,0) ist doch nicht in [mm] $V_{2}$ [/mm] weil ja gilt $n [mm] \ne [/mm] 0$ ??



> Gruss

Danke

Gruss
kushkush

Bezug
                        
Bezug
Vektorraum Teilmenge Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 01:22 Mi 06.04.2011
Autor: leduart

Hallo
dann ist V2 kein VR und was bedeutet denn sonst [mm] \IR(\epsilon,n) [/mm] wenn nicht alle [mm] r\in \IR V"=span(r*(\epsilon,n))? [/mm] sert r=0
wenn dies [mm] \IR(\epsilon,n) [/mm] was anderes bedeutet musst dus erklären.
Gruss leduart


Bezug
        
Bezug
Vektorraum Teilmenge Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:21 Mi 06.04.2011
Autor: fred97


> Seien [mm]V_{1}=\IR(1,0)[/mm] und [mm]V_{2}=\IR(\epsilon, n)[/mm] in [mm]\IR^{2}[/mm]
> mit [mm]n \ne 0[/mm].
>
> a) Man finde [mm]a,b[/mm] so dass [mm]f(V_{1})\subset V_{1}[/mm] und [mm]f(V_{2}) \subset (V_{2})[/mm]
> für die f mit Matrix [mm]\vektor{1&b \\ c& 0}[/mm]
>  Hallo,
>  
>
>
> Die Bedingung [mm]f(V_{1})\subset V_{1}[/mm] und [mm]f(V_{2}) \subset (V_{2})[/mm]
> wird sicher erfüllt, wenn es sich bei der Abbildung um
> eine Drehung handelt. Aber das kann ich hier nicht machen.
>
> also rechne ich weil gilt:  [mm]$$f(V_{1})= V_{1} \Rightarrow f(V_{1})\subset V_{1}$: $\vektor{1&b\\c&0} \vektor{1\\0}= \vektor{1\\c}$[/mm]
> Also wäre $c=0$

Ja. Wir halten also fest:  [mm] f(V_1) \subset V_1 \gdw [/mm]  c=0.

Weiter ist f( [mm] \vektor{\varepsilon \\ n})= \vektor{\varepsilon+bn \\ cn} [/mm]

Gilt nun  $ [mm] f(V_{1})\subset V_{1} [/mm] $ und $ [mm] f(V_{2}) \subset (V_{2}) [/mm] $, so folgt:

$ f( [mm] \vektor{\varepsilon \\ n})= \vektor{\varepsilon+bn \\ cn}= \vektor{\varepsilon+bn \\0}= [/mm] s* [mm] \vektor{\varepsilon \\ n}$ [/mm]  mit einem s [mm] \in \IR [/mm]

Wegen n [mm] \ne [/mm] 0 muß dann s=0 sein und damit auch [mm] \varepsilon+bn=0. [/mm] Also b= [mm] -\bruch{\varepsilon}{n} [/mm]

FRED

>
>
> dasselbe mit [mm]f(V_{2})= V_{2} \Rightarrow f(V_{1})\subset V_{1}[/mm]
> geht aber nicht und daher stecke ich fest.
>
> Wie komme ich weiter?
>  
>
>
> Ich habe diese Frage in keinem anderen Forum gestellt.
>
> Danke und Gruss
>  kushkush


Bezug
                
Bezug
Vektorraum Teilmenge Abbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:34 Mi 06.04.2011
Autor: kushkush

Hallo leduart und FRED,

> wegen [mm] n\ne [/mm] 0 muss dann s=0


Ok. Danke!!!

Gruss
kushkush

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de