www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Vektorraum der Polynome
Vektorraum der Polynome < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorraum der Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:57 So 16.11.2008
Autor: nina1

Aufgabe
Gibt es unter den Polynomen ein Erzeugendensystem des Vektorraums [mm] R_{\le2}[x]? [/mm]

=> P1(x)= [mm] -3^2 [/mm] + 2x -4
=> P2(x)= [mm] x^2 [/mm] + 5x - 3
=> P3(x)= [mm] -2^x [/mm] + 7x -7
=> P4(x)= [mm] -x^2 [/mm] - 5x + 3
=> P5(x)= -x-2
=> P6(x) = [mm] -6x^2 [/mm] + 4x -8

Hallo,

meine Frage ist jetzt warum man nicht aus P2(x) und P5(x) ein Erzeugendensystem bilden kann (sind ja linear unabhängig)?

Braucht man unbedingt noch ein 3. Polynom? Und wieso ist das so?


Und wenn ich jetzt ein Erzeugendensystem für den [mm] R_{\le2}[x] [/mm] suche, kann dies dargestellt werden durch die Vektoren
p1(x)= 3x + 6
p2(x)= 2x und
p3(x)= 4x

?

Viele Grüße


Nina

        
Bezug
Vektorraum der Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 09:41 Mo 17.11.2008
Autor: fred97


> Gibt es unter den Polynomen ein Erzeugendensystem des
> Vektorraums [mm]R_{\le2}[x]?[/mm]
>  
> => P1(x)= [mm]-3^2[/mm] + 2x -4
> => P2(x)= [mm]x^2[/mm] + 5x - 3
>  => P3(x)= [mm]-2^x[/mm] + 7x -7

>  => P4(x)= [mm]-x^2[/mm] - 5x + 3

>  => P5(x)= -x-2

>  => P6(x) = [mm]-6x^2[/mm] + 4x -8

>  
> Hallo,
>  
> meine Frage ist jetzt warum man nicht aus P2(x) und P5(x)
> ein Erzeugendensystem bilden kann (sind ja linear
> unabhängig)?
>  
> Braucht man unbedingt noch ein 3. Polynom? Und wieso ist
> das so?

Mit [mm] p_2 [/mm] und [mm] p_5 [/mm] kannst Du niemals konstante Polynome darstellen


>  
>
> Und wenn ich jetzt ein Erzeugendensystem für den
> [mm]R_{\le2}[x][/mm] suche, kann dies dargestellt werden durch die
> Vektoren
>  p1(x)= 3x + 6
>  p2(x)= 2x und
>  p3(x)= 4x

Nein. Das Polynom [mm] x^2 [/mm] kannst Du damit nicht darstellen.

FRED



>
> ?
>  
> Viele Grüße
>  
>
> Nina


Bezug
                
Bezug
Vektorraum der Polynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:51 Di 18.11.2008
Autor: nina1

Hallo,

was verstehst man unter "konstanten Polynomen"?

Lg.

Bezug
                        
Bezug
Vektorraum der Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 19:53 Di 18.11.2008
Autor: angela.h.b.



> was verstehst man unter "konstanten Polynomen"?

Hallo,

Polynome, die konstant sind.

z.B.  p(x)= 4711.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de