www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Vektorraum und Endomorphismus
Vektorraum und Endomorphismus < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorraum und Endomorphismus: Idee
Status: (Frage) beantwortet Status 
Datum: 22:29 Do 12.04.2007
Autor: alexmart

Aufgabe
Auf dem [mm] \IR [/mm] - Vektorraum V gebe es einen Endomorphismus [mm] \alpha \varepsilon End_{IR} [/mm] (V) mit
[mm] \alpha [/mm] ² = - [mm] id_{V} [/mm] .


Zeigen Sie:
(a) V wird zu einem [mm] \IC [/mm] - Vektorraum bzgl. der neuen Skalarmultiplikation
z*v = x v + y [mm] \alpha [/mm] (v) für alle v [mm] \varepsilon [/mm] V und z = x + i y [mm] \varepsilon \IC [/mm] mit x,y [mm] \varepsilon \IR. [/mm]

(b) Ist [mm] dim_{IR} [/mm] V endlich, so ist [mm] dim_{IR} [/mm] V eine gerade Zahl.

Hi,

also es handelt sich um die obige Aufgabe.

Erstmal habe ich mir zu (a) Gedanken gemacht und vielleicht die Lösung:

Sei v [mm] \varepsilon [/mm] V .
Dann existiert ein Endomorphismus mit [mm] \alpha [/mm] (v)² = - [mm] id_{V} [/mm] (v) = -v .
Daraus folgt dass [mm] \alpha [/mm] (v) = [mm] \wurzel{-1 * v} [/mm] = [mm] \wurzel{v} [/mm] i .

Durch einsetzen gelangt man zu: z*v = x v + y [mm] \wurzel{v} [/mm] i [mm] \varepsilon \IC. [/mm]

Ist das korrekt?
Wenn nicht, wo ist denn mein Denkfehler?

Bei Aufgabenteil (b) komme ich irgendwie nicht auf den Ansatz.
Vielleicht kann mir da jemand helfen?

Also ich bin über jede Antwort sehr dankbar.

Mit freundlichen Grüßen
Alexander


PS: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Vektorraum und Endomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 16:27 Fr 13.04.2007
Autor: SEcki


> Sei v [mm]\varepsilon[/mm] V .
>  Dann existiert ein Endomorphismus mit [mm]\alpha[/mm] (v)² = -
> [mm]id_{V}[/mm] (v) = -v .
>  Daraus folgt dass [mm]\alpha[/mm] (v) = [mm]\wurzel{-1 * v}[/mm] =
> [mm]\wurzel{v}[/mm] i .

Nein, überhaupt nicht. Deiese Wurzel ist nicht definiert. Am einfachsten ist es hier wirklich die VR-Axiome nachzurechnen - alles nicht schwer, vor allem bei der Assoziativität hilft der Endo, denn: [m]-v=(i*i)*v=\alpha(\alpha(v))=-v[/m], so als kleiner Hinweis.

> Ist das korrekt?

Nein.

>  Wenn nicht, wo ist denn mein Denkfehler?

Weiss ich nicht genau - aus Vektoren kann man keine Wurzeln ziehen, auch im Komplexen ist Wurzel ziehen schon böse.

> Bei Aufgabenteil (b) komme ich irgendwie nicht auf den
> Ansatz.
> Vielleicht kann mir da jemand helfen?

Sei [m]v_n[/m] eine Basis, dann ist [m]v_n,i*v_n[/m] eine des ursprünglichen Raumes.

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de