Vektorraumhomomorphismus < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:25 So 12.12.2004 | Autor: | KingMob |
Kann mir hierzu jemand bitte einen Anhaltspunkt liefern?
"Es sei V der [mm] \IR [/mm] Vektorraum aller konvergenten reellen Zahlenfolgen. Für alle n [mm] \in \IN [/mm] sei (en) [mm] \in [/mm] V die "n-te Einheitsfolge", d.h. die Folge (en) = (0,0,...,0,1,0,...) mit der 1 an der n-ten Stelle.
Man beweise oder widerlege : ist f : V [mm] \to [/mm] V ein Vektorraumhomomorphismus mit f(en) = en für alle n [mm] \in \IN [/mm] , so ist f = idV die Identität auf V."
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:47 So 12.12.2004 | Autor: | Hanno |
Hallo King!
Du musst bei dieser Aufgabe lediglich zeigen, dass jedes Element in sich selbst überführt wird, wenn dir gegeben ist, dass [mm] $\forall n\in\IN: f(e_n)=e_n$ [/mm] gilt. Denn wenn $f(v)=v$ für alle [mm] $v\in [/mm] V$, dann ist der Homomorphismus f genau die Identität, was du zeigen willst. Also nimmst du dir einen beliebigen Vektor [mm] $v\in [/mm] V$ und versuchst zu zeigen, dass $f(v)=v$ gilt. Nun erinnere dich daran, dass du ja jedes Element als Linearkombination der Basisvektoren darstellen kannst. Die Basis ist in diesem Falle die Menge [mm] $\{e_1,e_2,...\}$ [/mm] und die Linearkombination von v ist [mm] $\summe_{n=1}^{\infty}{v_n\cdot e_n}$ ($v_n$ [/mm] ist die n-te Komponente von v) - warum das so ist, das überlege dir bitte selbst. Es gilt also:
[mm] $f(v)=f\left(\summe_{n=1}^{\infty}{v_n\cdot e_n}\right)$
[/mm]
Das kannst du nun noch vereinfachen, da ja für den Homomorphismus f gilt: $f(v+w)=f(v)+f(w)$ und [mm] $f(\lambda\cdot v)=\lambda\cdot f(v),\quad \lambda\in [/mm] K$.
Schaffst du es nun? Wenn nicht, dann frag' einfach nach!
Liebe Grüße und Viel Erfolg,
Hanno
|
|
|
|