www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Vektorrechnung
Vektorrechnung < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:52 Sa 29.03.2008
Autor: ever

Aufgabe
Das Parallelogramm ABCD mit A(3/1/4), B(6/4/7), C(5/3/10) ist die Grundfläche einer geraden Pyramide mit der Höhe h=10xdie Wurzel aus2.
Berechne die Koordinaten der Pyramidenspitze.

Wie kommt man auf die Lösungen?

2 Lösungen sind richtig: S1(14/-8/7) und S2(-6/12/7).

Das einzige was ich ausgerechnet hab ist D(2/0/7) sowie das Kreuzprodukt vom Vektor a und b =(12/-12/0).
Hab zwei A4-Seiten vollgeschrieben mit Lösungsversuchen aber die sind alle komplett falsch, deswegen kann ich auch keine Lösungsansätze schreiben....

Bitte helft mir, ich habe mehrere ähnliche Beispiele mit gleichem Rechenschema und komme einfach nicht dahinter..

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.matheboard.de/thread.php?postid=707661#post707661
http://www.onlinemathe.de/forum/Vektorrechnung-45

        
Bezug
Vektorrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:19 Sa 29.03.2008
Autor: MathePower

Hallo ever,

[willkommenmr]

> Das Parallelogramm ABCD mit A(3/1/4), B(6/4/7), C(5/3/10)
> ist die Grundfläche einer geraden Pyramide mit der Höhe
> h=10xdie Wurzel aus2.

[mm]h=10\wurzel{2}[/mm]

> Berechne die Koordinaten der Pyramidenspitze.


Ist das die vollständige Aufgabenstellung?


>  Wie kommt man auf die Lösungen?
>  
> 2 Lösungen sind richtig: S1(14/-8/7) und S2(-6/12/7).
>
> Das einzige was ich ausgerechnet hab ist D(2/0/7) sowie das
> Kreuzprodukt vom Vektor a und b =(12/-12/0).

Ok. [mm]\pmat{-12 \\ 12 \\ 0}=12*\pmat{-1 \\ 1 \\ 0}[/mm]

Eine gerade Pyramide heisst ja, dass man eine Gerade mit dem Normalenvektor als Richtungsvektor bilden muss.

Suche also Punkte P, die  von der Ebene, die durch Punkte A, B, C geht, den Abstand h haben.

[mm]E:\overrrightarow{x}=\overrightarrow{OA}+s*\overrightarrow{AB}+t*\overrightarrow{AC}[/mm]

bzw.

[mm]E:\left(\overrightarrow{x}-\overrightarrow{OA}\right) \* \left(\overrightarrow{AB} \times \overrightarrow{AC}\right)=0[/mm]

und die Gerade g:

[mm]g:\overrightarrow{x}=\overrightarrow{OP}+u*\left(\overrightarrow{AB} \times \overrightarrow{AC}\right)[/mm]

Schneide diese Gerade g mit der Ebene E.

Für den Abstand dieser Punkte P zur Ebene E gilt:

[mm]\vmat{\overrightarrow{OP}-\overrightarrow{OA}}=\vmat{u*\left(\overrightarrow{AB} \times \overrightarrow{AC}\right)}=h[/mm]

Das heisst, die Punkte P, die von der Ebene E den Abstand h haben, liegen in einer parallelen Ebene zu E.

Daher wird eine zusätzliche Bedingung benötigt um die Punkte P genauer festzulegen.


>  Hab zwei A4-Seiten vollgeschrieben mit Lösungsversuchen
> aber die sind alle komplett falsch, deswegen kann ich auch
> keine Lösungsansätze schreiben....
>
> Bitte helft mir, ich habe mehrere ähnliche Beispiele mit
> gleichem Rechenschema und komme einfach nicht dahinter..
>  
> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:
>  
> http://www.matheboard.de/thread.php?postid=707661#post707661
>  http://www.onlinemathe.de/forum/Vektorrechnung-45

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de