www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Vektorrenrechnung im R3
Vektorrenrechnung im R3 < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorrenrechnung im R3: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:52 Mi 07.02.2007
Autor: blue_devil86

Aufgabe
In der Ebene E1 liegen die Punkte P1(3,4,1) und P2(0,1,2) und P3(-1,3,0)
und die ebene E2 ist gegeben durch x+2y-z+1=0

a) geben Sie die Parameterform der Ebende E1 an
b)Berechnen Sie die Parameterfreie Form von E1
c)Liegt der Punkt P4(2,3,9) in E2
d)Geben Sie einen Normalvektor von E2 an

Keine Ahnung was die Frau da von mir will kann das mir mal jemand näher bringen?
Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: keins




        
Bezug
Vektorrenrechnung im R3: Hinweise
Status: (Antwort) fertig Status 
Datum: 14:10 Mi 07.02.2007
Autor: Roadrunner

Hallo blue_devil,

[willkommenmr] !!


Gar keine eigenen Ideen oder Lösungsansätze?


Aufgabe a.):

Die Parameterform einer Ebene lautet:

$E \ : \ [mm] \vec{x} [/mm] \ = \ [mm] \vec{a}+\lambda*\vec{r}_1+\kappa*\vec{r}_2$ [/mm]

Dabei kannst Du einen der drei gegebenen Punkte als Aufpunkt mit Stützvektor [mm] $\vec{a}$ [/mm] wählen.

Die beiden zugehörigen Richtungsvektoren [mm] $\vec{r}_1$ [/mm] und [mm] $\vec{r}_2$ [/mm] erhältst Du aus der Differenz der beiden anderen Punkte zum Aufpunkt.


Aufgabe b.):

Die parametrefreie Darstellung wäre z.B. wie die Darstellung der Ebene [mm] $E_2$ [/mm] .


Aufgabe c.):

Setze doch einfach mal die Koordinaten des Punktes [mm] $P_4$ [/mm] in die Ebenengleichung ein. Entsteht hieraus eine wahre Aussage?


Aufgabe d.):

Einen Normalenvektor [mm] $\vec{n} [/mm] \ = \ [mm] \vektor{\red{x}\\ \blue{y}\\ \green {z}}$ [/mm] kann man aus der dargestellten Form der Ebene [mm] $E_2$ [/mm] direkt ablesen:

[mm] $E_2 [/mm] \ : \ x+2y-z-1 \ = \ [mm] \red{1}*x+\blue{2}*y+(\green{-1})*z-1 [/mm] \ = \ 0$


Gruß vom
Roadrunner


Bezug
                
Bezug
Vektorrenrechnung im R3: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:15 Mi 07.02.2007
Autor: blue_devil86

okay a) hab ich geschaft

[mm] \vektor{3 \\ 4 \\ 1} [/mm]
[mm] \vektor{-3 \\-3 \\ 1} [/mm]
[mm] \vektor{-4 \\ -1 \\ -1} [/mm]

aber die anderen hmmm

Bezug
                        
Bezug
Vektorrenrechnung im R3: Antwort
Status: (Antwort) fertig Status 
Datum: 17:29 Mi 07.02.2007
Autor: Manu_Chemnitz

Hallo blue_devil86,

nun hast du ja schonmal die parameterfreie Darstellung von E1. Sie lautet

[mm] \begin{pmatrix} x\\ y\\ z\\ \end{pmatrix} = \begin{pmatrix} 3\\ 4\\ 1\\ \end{pmatrix} + s \begin{pmatrix} 0\\ 1\\ 2\\ \end{pmatrix} + t \begin{pmatrix} -1\\ 3\\ 0\\ \end{pmatrix}[/mm].

Daraus kannst du ein Gleichungssystem mit 3 Gleichungen aufstellen:

x = 3 +    - t
y = 4 + s + 3t
z = 1 + 2s

Und nun versuche doch mal, die Gleichungen in eine Ebenenform umzustellen, indem du die Parameter s und t eliminierst.

Viele Grüße,
Manu


Bezug
                                
Bezug
Vektorrenrechnung im R3: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:48 Mi 07.02.2007
Autor: blue_devil86

jo ich hab gerade alles heraus bekommen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de