www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Vektroraum--> Linear unabhängi
Vektroraum--> Linear unabhängi < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektroraum--> Linear unabhängi: aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:30 Mo 01.05.2006
Autor: chilavert

Aufgabe
Es sei V Vektorraum und v1; v2; v3 Vektoren. Sie seien linear unabhängig
Zeige:
Dann sind auch v1 + v2; v1 + v3; v2 + v3 linear unabhängig

kann mir da wohl mal jemand helfen? ich weiß nicht wie ich das machen soll bzw. kann,wäre super

        
Bezug
Vektroraum--> Linear unabhängi: Antwort
Status: (Antwort) fertig Status 
Datum: 12:45 Mo 01.05.2006
Autor: felixf


> Es sei V Vektorraum und v1; v2; v3 Vektoren. Sie seien
> linear unabhängig
>  Zeige:
>  Dann sind auch v1 + v2; v1 + v3; v2 + v3 linear
> unabhängig
>  kann mir da wohl mal jemand helfen? ich weiß nicht wie ich
> das machen soll bzw. kann,wäre super

Nimm an, es gibt [mm] $\lambda_1, \dots, \lambda_3 \in [/mm] K$ mit [mm] $\lambda_1 (v_1 [/mm] + [mm] v_2) [/mm] + [mm] \lambda_2 (v_1 [/mm] + [mm] v_3) [/mm] + [mm] \lambda_3 (v_2 [/mm] + [mm] v_3) [/mm] = 0$. Jetzt formst du das so um, dass du was a la [mm] $\mu_1 v_1 [/mm] + [mm] \mu_2 v_2 [/mm] + [mm] \mu_3 v_3 [/mm] = 0$ da stehen hast. Da  [mm] $v_1, \dots, v_3$ [/mm] l.u. sind, muss [mm] $\mu_1 [/mm] = [mm] \mu_2 [/mm] = [mm] \mu_3 [/mm] = 0$ sein. Jetzt musst du dadraus folgern, dass auch [mm] $\lambda_1 [/mm] = [mm] \lambda_2 [/mm] = [mm] \lambda_3 [/mm] = 0$ sind.

(Ist praktisch das gleiche wie ein lineares Gleichungssystem mit drei Variablen und drei Gleichungen zu loesen.)

LG Felix


Bezug
                
Bezug
Vektroraum--> Linear unabhängi: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:49 Mo 01.05.2006
Autor: chilavert

danke,also ich habe es nun mal alleine versucht,aber ich bekomme wirklich nichts hin udn dein lösungsvorschlag versteh ich irgendwie nicht,mathe ist doch nur sch....,man hängt echt nur die ganze zeit an den aufgaben,man man,ich hoffe mir kann da nochmal jemand weiterhelfen

Bezug
                        
Bezug
Vektroraum--> Linear unabhängi: Antwort
Status: (Antwort) fertig Status 
Datum: 16:30 Mo 01.05.2006
Autor: DaMenge

Hi,

vielleicht sollte man sich am Anfang einfach daran gewöhnen Definitionen nachzuschlagen und zu verwenden?

Felix hat dir praktisch die komplette Lösung schon geschrieben !

also - wann sind drei vektoren linear unabhängig?
genau, wenn es nur die triviale Darstellung der 0 gibt.
(d.h. alle Koeffizienten sind 0, wenn man eine beliebige linearkombination gleich 0 setzt)

Was bedeutet das jetzt für die Aufgabe und für die 3 neuen Vektoren?

[mm] $\lambda_1 (v_1 [/mm] + [mm] v_2) [/mm] + [mm] \lambda_2 (v_1 [/mm] + [mm] v_3) [/mm] + [mm] \lambda_3 (v_2 [/mm] + [mm] v_3) [/mm] = 0$

wenn man folgern kann, dass alle Lambda's gleich 0 sind, so sind die Vektoren linear unabhängig !

Und jetzt musst du mit dieser Gleichung genau das machen, was Felix schon geschrieben hatte : einfach ausmultiplizieren und die [mm] v_i [/mm] zusammenfassen, so dass du $ [mm] \mu_1 v_1 [/mm] + [mm] \mu_2 v_2 [/mm] + [mm] \mu_3 v_3 [/mm] = 0 $ dastehen hast, wobei die [mm] $\mu_i$ [/mm] in abhängigkeit der lambda's gegeben sind...

weil aber die [mm] v_i [/mm] linear unabhängig sind, weißt du bereits, dass alle [mm] $\mu_i$ [/mm] gleich 0 sind - also was kannst du dann über die lambda's schlussfolgern ?

> ,mathe ist doch nur sch....,

DAS ist irgendwie nicht clever in einem MatheForum zu sagen, wenn man noch weitere Hilfe möchte...
(es gibt hier durchaus sehr viele Leute, die Mathe recht schön finden (und sich bei sowas aufm Schlips getreten fühlen) - sonst wärest du wohl kaum hier, oder ?)
Die Mathematik ist sicher nicht daran schuld, dass es nicht einfach ist.

Aber ich hoffe mal, das liegt einfach nur an einer gewissen Frustschwelle, die bei dir überschritten wurde - daran gewöhnt man sich...
Also einfach Zähne zusammenbeißen und durch !

viele Grüße
DaMenge

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de