www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Verallgemeinerte Helix
Verallgemeinerte Helix < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verallgemeinerte Helix: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 23:02 Di 20.10.2015
Autor: mariem

Hallo,

ich gucke die folgende Aufgabe:

A regular curve [mm] \gamma [/mm] in [mm] \mathbb{R}^3 [/mm] with curvature > 0 is called a generalized helix if its tangent vector makes a fixed angle [mm] \theta [/mm] with a fixed unit vector a.
Show that the torsion [mm] \tau [/mm] and curvature [mm] \kappa [/mm] of [mm] \gamma [/mm] are related by [mm] \tau [/mm] = [mm] ±\kappa \cot \theta. [/mm]
Show conversely that, if the torsion and curvature of a regular curve are related by [mm] \tau [/mm] = [mm] \lambda \kappa [/mm] where [mm] \lambda [/mm] is a constant, then the curve is a generalized helix.


Den ersten Teil habe ich gezeigt...

Beim zweiten Teil wenn die Windung und die Krümmung die Relation [mm] \tau [/mm] = [mm] \lambda \kappa [/mm] erfüllen, wie zeigt man dass die Kurve eine verallgemeinerte Helix ist?

        
Bezug
Verallgemeinerte Helix: Anschauung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:41 Do 22.10.2015
Autor: Al-Chwarizmi


> A regular curve [mm]\gamma[/mm] in [mm]\mathbb{R}^3[/mm] with curvature > 0
> is called a generalized helix if its tangent vector makes a
> fixed angle [mm]\theta[/mm] with a fixed unit vector a.
> Show that the torsion [mm]\tau[/mm] and curvature [mm]\kappa[/mm] of [mm]\gamma[/mm]
> are related by [mm]\tau[/mm] = [mm]±\kappa \cot \theta.[/mm]
> Show conversely that, if the torsion and curvature of a
> regular curve are related by [mm]\tau[/mm] = [mm]\lambda \kappa[/mm] where
> [mm]\lambda[/mm] is a constant, then the curve is a generalized
> helix.
>
>
> Den ersten Teil habe ich gezeigt...
>
> Beim zweiten Teil wenn die Windung und die Krümmung die
> Relation [mm]\tau[/mm] = [mm]\lambda \kappa[/mm] erfüllen, wie zeigt man
> dass die Kurve eine verallgemeinerte Helix ist?  


Hallo mariem,

ich habe die Definition solcher "verallgemeinerter Helices"
bisher noch nicht angetroffen. Ich versuche mir nun aber eine
anschauliche Vorstellung einer solchen Kurve C zu machen.
O.B.d.A. dürfen wir etwa annehmen, dass der fix vorgegebene
Vektor a in die positive z-Richtung eines geeigneten x-y-z-
Koordinatensystems sei. Dann kann man sich die Kurve
als einen "Bergweg" vorstellen, der sich mit konstanter
Steigung   $\ m\ =\ [mm] \frac{dz}{\sqrt{dx^2+dy^2}}$ [/mm]  z.B.
einem gebirgigen Hang entlang emporwindet.
Der Verlauf einer derartigen (differenzierbaren) Kurve C in [mm] \IR^3 [/mm]
ist dann durch ihren "Grundriss" C'  in der x-y-Ebene vollständig
festgelegt. Damit die Kurvenkrümmung nirgends verschwindet
(dies wäre bei einer Geraden C durchwegs der Fall), muss
man verlangen, dass die Grundrisskurve C'  keine "Geradeaus-
Punkte" enthält. Mit anderen Worten: C' muss entweder
eine linksrum oder rechtsrum gewundene Kurve sein. Sie
darf keine Wendepunkte besitzen.

Nun vermute ich, dass schon diese Betrachtungsweise die
nötigen Ansätze für den zugehörigen Nachweis liefern
kann.

LG ,   Al-Chwarizmi


Bezug
        
Bezug
Verallgemeinerte Helix: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Sa 24.10.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de