www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Verbindung zweier Geraden
Verbindung zweier Geraden < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verbindung zweier Geraden: Idee
Status: (Frage) beantwortet Status 
Datum: 19:21 Do 19.05.2016
Autor: Franhu

Aufgabe
Es sei A = [mm] \vektor{-5 \\ 0 \\ 2}, [/mm] B = [mm] \vektor{2 \\ 7 \\ 9}, [/mm] C = [mm] \vektor{2 \\ 4 \\ 0}, [/mm] D = [mm] \vektor{4 \\ 0 \\ 4}. [/mm] Es gibt eine Strecke, deren Endpunkte auf den Geraden AB und CD liegen und die durch den Punkt P = [mm] \vektor{-3 \\ 5 \\ 8} [/mm] geht. Welches sind ihre Endpunkte und wie lang ist sie?


Hallo Zusammen

Ich krieg bei diesen Aufgaben einfach den Lösungsansatz nicht hin. Was ich bis jetzt weiss. Die beiden Geraden sind windschief.

für AB habe ich die Geradengleichung g: [mm] \vec{x} [/mm] = [mm] \vektor{-5 \\ 0 \\ 2} [/mm] + [mm] \lambda \vektor{1 \\ 1 \\ 1} [/mm]

für CD habe ich die Geradengleichung h: [mm] \vec{x} [/mm] = [mm] \vektor{2 \\ 4 \\ 0} [/mm] + [mm] \delta \vektor{1 \\ -2 \\ 2} [/mm]

Irgendwie muss ich jetzt eine weitere Gerade konstruieren welche als Startpunkt einen Punkt auf g hat und der Richtungsvektor aus diesem Punkt  und P berechnen. Diese Gerade muss einen Punkt auf der Geraden h haben.

Oder kann ich mit den Normalenvektor von g, welcher durch Punkt p geht ausrechnen ond dann dieser Vektor solange verschieben bis er sich mit h schneidet? Ist sowas überhaupt möglich?

Besten Dank für eure supper Unterstützung!
Franhu

        
Bezug
Verbindung zweier Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 21:18 Do 19.05.2016
Autor: angela.h.b.


> Es sei A = [mm]\vektor{-5 \\ 0 \\ 2},[/mm] B = [mm]\vektor{2 \\ 7 \\ 9},[/mm]
> C = [mm]\vektor{2 \\ 4 \\ 0},[/mm] D = [mm]\vektor{4 \\ 0 \\ 4}.[/mm] Es gibt
> eine Strecke, deren Endpunkte auf den Geraden AB und CD
> liegen und die durch den Punkt P = [mm]\vektor{-3 \\ 5 \\ 8}[/mm]
> geht. Welches sind ihre Endpunkte und wie lang ist sie?
>  Hallo Zusammen
>  
> Ich krieg bei diesen Aufgaben einfach den Lösungsansatz
> nicht hin. Was ich bis jetzt weiss. Die beiden Geraden sind
> windschief.
>  
> für AB habe ich die Geradengleichung g: [mm]\vec{x}[/mm] =
> [mm]\vektor{-5 \\ 0 \\ 2}[/mm] + [mm]\lambda \vektor{1 \\ 1 \\ 1}[/mm]

> für CD habe ich die Geradengleichung h: [mm]\vec{x}[/mm] =
> [mm]\vektor{2 \\ 4 \\ 0}[/mm] + [mm]\delta \vektor{1 \\ -2 \\ 2}[/mm]

Überlegen wir, was die Geradengleichungen uns sagen: sie sagen uns, wie die Punkte, die auf der jeweiligen Geraden liegen, gemacht sind.

Sei R ein Punkt auf g, er hat dann die Koordinaten [mm] R(-5+\lambda| \lambda [/mm] | [mm] 2+\lambda) [/mm] für ein festes [mm] \lambda. [/mm]
Sei S ein Punkt auf h, er hat dann die Koordinaten [mm] S(2+2\delta| 4-2\delta [/mm] | [mm] 2\delta) [/mm] für ein festes [mm] \delta. [/mm]

Man könnte jetzt die Gleichung der Geraden durch diese beiden Punkte aufstellen (da brauchen wir wieder einen Parameter, etwa [mm] \mu), [/mm] und dann könnte man sich überlegen, wie [mm] \lambda, \delta, \mu [/mm] sein müssen, damit P draufliegt.

So richtig elegant ist diese Lösung nicht...

>  
> Irgendwie muss ich jetzt eine weitere Gerade konstruieren
> welche als Startpunkt einen Punkt auf g hat und der
> Richtungsvektor aus diesem Punkt  und P berechnen. Diese
> Gerade muss einen Punkt auf der Geraden h haben.

Ja, das wäre so ähnlich wie das, was ich oben machen möchte.

Oder man nimmt R und S wie oben und überlegt sich, daß
[mm] \overrightarrow{RP}=k*\overrightarrow{SP} [/mm] sein muß.
Damit bin ich eben gut zum Ziel gekommen.

LG Angela



>
> Oder kann ich mit den Normalenvektor von g, welcher durch
> Punkt p geht ausrechnen ond dann dieser Vektor solange
> verschieben bis er sich mit h schneidet? Ist sowas
> überhaupt möglich?
>  
> Besten Dank für eure supper Unterstützung!
>  Franhu


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de