www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Vereinfachen
Vereinfachen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vereinfachen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:18 Mi 02.04.2008
Autor: ebarni

Aufgabe
Kann ich die Ausdrücke:

y = [mm] \bruch{2}{5}e^{2x} [/mm] - [mm] \bruch{1}{3}e^{-2x} [/mm] - [mm] \bruch{1}{15}e^{7x} [/mm]

bzw.

y = [mm] \bruch{1}{3}e^{-2x} [/mm] - [mm] \bruch{1}{4}e^{3x} [/mm] - [mm] \bruch{1}{12}e^{7x} [/mm]

noch vereinfachen bzw. zusammenfassen?

oder geht das nicht mehr zusammenzufassen?

Viele Grüße, Andreas

        
Bezug
Vereinfachen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:22 Mi 02.04.2008
Autor: Steffi21

Hallo, du kannst es vereinfachen, schreibe in der ersten Aufgabe die Potenz mit negativen Exponenten [mm] e^{-2x} [/mm] unter den Bruchstrich, Exponent wird positiv, dann solltest du den Hauptnenner schon erkennen, Steffi

Bezug
                
Bezug
Vereinfachen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:21 Mi 02.04.2008
Autor: ebarni

Hallo Steffi, vielen Dank für Deine schnelle Antwort!

Meinst Du so:

[mm] y_1 [/mm] = [mm] \bruch{2}{5}e^{2x} [/mm] - [mm] \bruch{1}{3e^{2x}} [/mm] - [mm] \bruch{1}{15}e^{7x} [/mm]

[mm] y_2 [/mm] = [mm] \bruch{1}{3e^{2x}} [/mm] - [mm] \bruch{1}{4}e^{3x} [/mm] - [mm] \bruch{1}{12}e^{7x} [/mm]

Aber wie hilft mir das weiter?

Viele Grüße, Andreas

Bezug
                        
Bezug
Vereinfachen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:46 Mi 02.04.2008
Autor: steppenhahn

Ich vermute mal, dass Steffi folgendes beabsichtigte:

Es ist

[mm]\bruch{2}{5}*\exp(2*x) - \bruch{1}{3}*\exp(-2*x) - \bruch{1}{15}*\exp(7*x)[/mm]

[mm]=\bruch{1}{15}*\left(6*\exp(2*x) - 5*\exp(-2*x) - \exp(7*x)\right)[/mm]

[mm]=\bruch{1}{15}*\left(6*\exp(2*x) - \bruch{5}{\exp(2*x)} - \exp(7*x)\right)[/mm]

[mm]=\bruch{1}{15}*\left(6*\exp(2*x) - \bruch{5}{\exp(2*x)} - \exp(7*x)\right)[/mm]

Nun überall den Hauptnenner [mm] \exp(2*x) [/mm] bilden:

[mm]=\bruch{1}{15}*\left(6*\bruch{\exp(4*x)}{\exp(2*x)} - \bruch{5}{\exp(2*x)} - \bruch{exp(9*x)}{\exp(2*x)}\right)[/mm]

[mm]=\bruch{1}{15}*\left(\bruch{6*\exp(4*x) - 5 - \exp(9*x)}{\exp(2*x)}\right)[/mm]

Nun eventuell noch

[mm]=\bruch{1}{15*\exp(2*x)}*\left(\bruch{6*\exp(4*x) - 5 - \exp(9*x)\right)[/mm]

Mehr geht eigentlich nicht. Kurz und bündig haben wir aus dem ursprünglichen Term einfach

[mm] \bruch{1}{15*\exp(2*x)} [/mm]

ausgeklammert. Dadurch faktorisierst du den Term etwas; das hat Vorteile bei der Nullstellenbestimmung, macht aber mehr Arbeit beim Ableiten und Integrieren.
Meiner Meinung nach sind diese Vereinfachungen nicht wirklich nötig; wölltest du jedoch trotzdem eine ähnliche bei 2. machen, so müsstest du

[mm] \bruch{1}{12*\exp(2*x)} [/mm]

ausklammern.

Bezug
                                
Bezug
Vereinfachen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:41 Mi 02.04.2008
Autor: ebarni

Hallo Stefan, alles klar, vielen Dank für Deine ausführliche Antwort!

Ist mir jetzt soweit klar!

Viele Grüße, Andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de