www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Vereinfachung einer Gleichung
Vereinfachung einer Gleichung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vereinfachung einer Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:34 So 30.03.2008
Autor: olivercan

Aufgabe
[mm] \bruch{x^3+x^2-8x-12}{-x^3+4x^2+3x-18}=\bruch{(x+2)^2(x-3)}{-(x+2)(x-3)²} [/mm]

Hallo
Ich verstehe leider nicht wie man zu dieser Gleichung kommt.
Ich habe gehört dass es mit Partialsummenzerlegung funktionieren soll doch weiß ich nicht wie man diese anwendet.
Ich bitte um eure Hilfe
Danke
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Vereinfachung einer Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:53 So 30.03.2008
Autor: schachuzipus

Hallo olivercan,

erst einmal herzlich [willkommenmr] ;-)

>
> [mm]\bruch{x^3+x^2-8x-12}{-x^3+4x^2+3x-18}=\bruch{(x+2)^2(x-3)}{-(x+2)(x-3)²}[/mm]
>  Hallo
>  Ich verstehe leider nicht wie man zu dieser Gleichung
> kommt.
>  Ich habe gehört dass es mit Partialsummenzerlegung
> funktionieren soll doch weiß ich nicht wie man diese
> anwendet.

Betrachte Zähler und Nenner getrennt voneinander und versuche, die zu faktorisieren.

Ich zeige mal für den Zähler, wie man anfängt...

Also das Zählerpolynom ist [mm] $x^3+x^2-8x-12$ [/mm]

Nun müssen wir dessen Nullstellen bestimmen.

Da gibt es einen "kleinen Trick" bzw. Satz, der besagt, dass wenn es eine ganzzahlige Nullstelle [mm] $x_0$ [/mm] gibt, diese ein ganzzahliger Teiler des Absolutgliedes, also desjenigen ohne x, ist.

Hier ist das Absolutglied 12 bzw. -12, das hat die Teiler [mm] $\{\pm 1,\pm 2,\pm 3,\pm 4,\pm 6,\pm 12\}$ [/mm]

Die können wir mal einsetzen in das Zählerpolynom und schauen, ob eine davon eine NST ist:

Fangen wir mit [mm] $x_0=1$ [/mm] an: [mm] $1^3+1^2-8\cdot{}1-12=-18\neq [/mm] 0$ - passt schon mal nicht

als nächstes [mm] $x_0=2$: [/mm] einsetzen: [mm] $2^3+2^2-8\cdot{}2-12=-16\neq [/mm] 0$ - wieder nix

nun [mm] $x_0=3$ [/mm] probieren: [mm] $3^3+3^2-8\cdot{}3-12=27+9-24-12=0$ [/mm]

Ha, passt!

Nun können wir mit Hilfe der Polynomdivision den Linearfaktor [mm] $(x-x_0)$, [/mm] also $(x-3)$ abspalten und so das Polynom um einen Grad runterschrauben, so dass es ein quadratisches wird, das du mit der p/q-Formal weiter verarzten kannst

[mm] $(x^3+x^2-8x-12):(x-3)=x^2+4x+4$ [/mm]

Die weiteren Nullstellen von [mm] $x^2+4x+4$ [/mm] kannst du ja locker bestimmen.

Wenn du alle 3 NST [mm] x_0,x_1,x_2 [/mm] hast, kannst du das (Ausgangs)Zählerpolynom schreiben als [mm] $(x-x_0)(x-x_1)(x-x_2)$ [/mm]

Und genauso machst du das mit dem Nennerpolynom...

>  Ich bitte um eure Hilfe
>  Danke
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt


Lieben Gruß

schachuzipus

Bezug
                
Bezug
Vereinfachung einer Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:13 So 30.03.2008
Autor: olivercan

hallo schachuzipus ,vielen dank für deine schnelle antwort.
Ich habe beim zähler weitergemacht und dank der pq Formel 2 mal -2 als Nullstelle gefunden.
Beim Nenner fand ich -2 als Nulstelle denn 8+16-6-18=0
dann habe ich die Polynomdivision gemacht und fand [mm] -x^3+4x^2+3x-18:x+2= -x^2+6x-9 [/mm] doch wenn ich nun die pq Formel einsetzte erhalte ich : -3 plus-minus wurzel von 18  doch eigentlich müsste ich -3 plus-minus 0 erhalten.Weißt du wo ich mich verrechnet habe?

Bezug
                        
Bezug
Vereinfachung einer Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:23 So 30.03.2008
Autor: Tyskie84

Hallo!

> hallo schachuzipus ,vielen dank für deine schnelle
> antwort.
>  Ich habe beim zähler weitergemacht und dank der pq Formel
> 2 mal -2 als Nullstelle gefunden.
>  Beim Nenner fand ich -2 als Nulstelle denn 8+16-6-18=0

[ok] stimmt

>  dann habe ich die Polynomdivision gemacht und fand
> [mm]-x^3+4x^2+3x-18:x+2= -x^2+6x-9[/mm] doch wenn ich nun die pq

[ok] das ist auch richtig. Wir erhalten [mm] -x^{2}+6x-9 [/mm] Nun teilen wir durch -1 um das Minus vor dem [mm] x^{2} [/mm] wegzubekommen. Demanch: [mm] x^{2}-6x+9 [/mm] Und dies mit der pq-Formel berechnen:

[mm] x_{0}=-(\bruch{-6}{2})\pm\wurzel{(\bruch{-6}{2})^{2}-9}=3\pm\wurzel{9-9}=3. [/mm] Also 3 als doppelte Nullstelle´:-)

> Formel einsetzte erhalte ich : -3 plus-minus wurzel von 18  
> doch eigentlich müsste ich -3 plus-minus 0 erhalten.Weißt
> du wo ich mich verrechnet habe?

[cap] Gruß


Bezug
                                
Bezug
Vereinfachung einer Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:36 So 30.03.2008
Autor: olivercan

Hallo Tyskie84.
Sorry mein Internet ist grad abgestützt deshalb antworte ich erst jetzt.
Danke für deine Antwort jetzt verstehe ich was ich falsch gemacht habe doch frage ich mich noch woher das minus am Anfang des nenners kommt?

Bezug
                                        
Bezug
Vereinfachung einer Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:56 So 30.03.2008
Autor: schachuzipus

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo nochmal,

anstatt durch -1 zu teilen, klammere es besser aus, dann geht's dir nicht verloren ;-)

also nach deiner PD hattest du: $(-x^3+4x^2+3x-18):(x+2)=-x^2+6x-9$

Also blieben - wie du's auch richtig angesetzt hast - die NST von $-x^2+6x-9$ zu bestimmen:

$-x^2+6x-9=0\gdw \blue{(-1)}\cdot{}\red{(x^2-6x+9)}=0$

Die NST von $\red{(x^2-6x+9)}$ war $x=3$ als doppelte NST

Damit kannst du deinen Nenner schreiben als $\blue{(-1)\cdot{}\red{(x+2)\cdot{}(x-3)\cdot{}(x-3)}=-(x+2)(x-3)^2$

LG

schachuzipus

Bezug
                                                
Bezug
Vereinfachung einer Gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:00 So 30.03.2008
Autor: olivercan

Vielen Dank für alles ich bin sehr froh dass ich es nun endlich verstehe.
Viele Grüße.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de