www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Vereinigung von Primidealen
Vereinigung von Primidealen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vereinigung von Primidealen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:16 So 02.12.2007
Autor: Improvise

Aufgabe
Sei A ein Ring.
1) Seien [mm] \alpha \subseteq [/mm] A Ideal und p1,p2 [mm] \subseteq [/mm] A Primideale mit [mm] \alpha \subseteq [/mm] p1 [mm] \cup [/mm] p2. Zeige, dass dann entweder [mm] \alpha \subseteq [/mm] p1 oder [mm] \subseteq [/mm] p2
2) Zeigen Sie, dass 1) im Allgemeinen falsch ist für beliebige Ideale p1,p2

hallo. ich finde bei beiden leider keinen ansatz. hat jemand einen tipp bzw. eine lösung??? vielen dank im vorraus...

        
Bezug
Vereinigung von Primidealen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:24 Mo 03.12.2007
Autor: felixf

Hallo

> Sei A ein Ring.
>  1) Seien [mm]\alpha \subseteq[/mm] A Ideal und p1,p2 [mm]\subseteq[/mm] A
> Primideale mit [mm]\alpha \subseteq[/mm] p1 [mm]\cup[/mm] p2. Zeige, dass
> dann entweder [mm]\alpha \subseteq[/mm] p1 oder [mm]\subseteq[/mm] p2

Das gilt uebrigens auch fuer Vereinigungen von endlich vielen Primidealen.

>  2) Zeigen Sie, dass 1) im Allgemeinen falsch ist für
> beliebige Ideale p1,p2
>
>  hallo. ich finde bei beiden leider keinen ansatz. hat
> jemand einen tipp bzw. eine lösung??? vielen dank im
> vorraus...

Zu (1):

Die Faelle [mm] $p_1 \subseteq p_2$ [/mm] und [mm] $p_2 \subseteq p_1$ [/mm] kannst du erstmal ausschliessen.

Mach doch einen Widerspruchsbeweis. Wenn [mm] $\alpha$ [/mm] weder in [mm] $p_1$ [/mm] noch in [mm] $p_2$ [/mm] enthalten ist, dann gibt es jeweils ein Element, welches in [mm] $\alpha$ [/mm] liegt, aber nicht in [mm] $p_i$, [/mm] $i = 1, 2$.  Und es gibt jeweils ein Element, welches in [mm] $p_i$ [/mm] liegt, aber nicht in [mm] $p_j$, [/mm] $j [mm] \neq [/mm] i$.

Das kombiniere jetzt zu zwei Elementen, welche in [mm] $(\alpha \cap p_i) \setminus p_j$ [/mm] liegen, $j [mm] \neq [/mm] i$, und das wiederum zu einem Element, welches in [mm] $\alpha$, [/mm] aber in keinem der [mm] $p_i$ [/mm] enthalten ist -- das ist dann der Widerspruch.

LG Felix


Bezug
        
Bezug
Vereinigung von Primidealen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:56 Di 04.12.2007
Autor: felixf

Hallo

> Sei A ein Ring.
>  1) Seien [mm]\alpha \subseteq[/mm] A Ideal und p1,p2 [mm]\subseteq[/mm] A
> Primideale mit [mm]\alpha \subseteq[/mm] p1 [mm]\cup[/mm] p2. Zeige, dass
> dann entweder [mm]\alpha \subseteq[/mm] p1 oder [mm]\subseteq[/mm] p2
>  2) Zeigen Sie, dass 1) im Allgemeinen falsch ist für
> beliebige Ideale p1,p2

Aussage 2) ist falsch, a) gilt naemlich fuer beliebige Ideale. Aussage 2) stimmt erst, wenn man Aussage 1) fuer endlich viele Primideale formuliert (mit mehr als zweien!).

Die Beweisskizze aus meiner alten Antwort benoetigt naemlich (bei zwei Faktoren) gar nicht, dass [mm] $p_1$ [/mm] und [mm] $p_2$ [/mm] Primideale sind.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de