www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Verfahren zur Lösung
Verfahren zur Lösung < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verfahren zur Lösung: Tipp
Status: (Frage) beantwortet Status 
Datum: 20:32 Mo 06.12.2010
Autor: labelleamour

Aufgabe
Berechne die Nullstellen der Funktion f!
c) x³-4x+3

Ich suche jetzt ein Verfahren zur Lösung dieser,aber irgendwie funktionieren die verfahren,die wir im Unterricht erlernt haben nicht ( für mich zum jetzigen Zeitpunkt!).

1) ausklammern geht nicht, wegen der 3
2) substitution, da nicht [mm] x^4 [/mm] und [mm] x^2 [/mm] b.z.w ^3 und 6.
3) ablesen geht nicht
4) polynomdivision, will auch nicht so recht funktionieren, ich wollte 1 als teiler nehmen....

Lg Sarah

        
Bezug
Verfahren zur Lösung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:49 Mo 06.12.2010
Autor: Sigma

Hallo Sarah,

bei 1) und 2) hast du Recht.
Bei 3) denke ich du meinst du zeichnen und Nullstellen ablesen. Ist etwas schwer bei der Funktion aber eine Zeichnung hat noch nie geschadet. Da kann man die Nullstellen zumindest abschätzen bzw erraten.

Bei 4) bist du auf dem richtigen Weg. du hast eine Nullstelle mit $f(1)=0$ erkannt bzw. erraten. Nun musst du die Polynomdivision mit $f(x):(x-1)$ durchführen.

mfg sigma

Bezug
                
Bezug
Verfahren zur Lösung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:02 Mo 06.12.2010
Autor: labelleamour

ja damit wollte ich ja auch beginnen, aber das geht nicht.

es wäre dann ja x³-4x+3 / (x-1)
allerdings häätte ich dann -4x-- x²
also plus,aber ich kann zu 4x ja schlecht x² addieren...

Bezug
                        
Bezug
Verfahren zur Lösung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:10 Mo 06.12.2010
Autor: Sigma

Aha,

da liegt der Hund begraben.Dann schreibe doch einfach

[mm] $(x^3+0*x^2-4x+3) [/mm] /(x-1)$

Dann kannst du zu [mm] $0*x^2$ [/mm] auch [mm] $x^2$ [/mm] addieren.

mfg sigma

Bezug
                                
Bezug
Verfahren zur Lösung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:20 Mo 06.12.2010
Autor: labelleamour

dann komme ich auf x²-4x
davon muss ich x² +4 abziehen
das kommt mir dann jaa wieder in die Quere!

Bezug
                                        
Bezug
Verfahren zur Lösung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:27 Mo 06.12.2010
Autor: MathePower

Hallo labelleamour,

> dann komme ich auf x²-4x
>  davon muss ich x² +4 abziehen


Das muss [mm]x^{2}-x[/mm] sein.


>  das kommt mir dann jaa wieder in die Quere!  


Dann schreibe [mm]x^{2}-4*x+3[/mm]


Gruss
MathePower

Bezug
                                        
Bezug
Verfahren zur Lösung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:41 Mo 06.12.2010
Autor: Sigma

Hier kannst du deine Rechnung nochmal überprüfen. Auch kannst du dir Beispielaufgaben erzeugen lassen.

[]PolynomDivision

Ps. Wesentlich einfach gestaltet sich die Polynomdivision mit dem Horner Schema. Aber erstmal musst du es auf dem normalen Weg bringen. Dann kannst du es auch mal mit dem Horner Schema probieren.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de