www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Verflixte Integration
Verflixte Integration < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verflixte Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:18 So 07.12.2008
Autor: invisibleandpink

Hallo ihr!

Ich sitze jetzt schon seit Längerem an einem Integral, bei dem ich einfach nicht weiterkomme. Es geht um das Flächenintegral von [mm] f(x,y)=\bruch{(x^{2}+y^{2})}{(x^{4}+y^{4}+2x^{2}y^{2}+1)} [/mm] über das Gebiet G mit [mm] 1\le x^{2}+y^{2}\le2 [/mm]

Ich komme im Prinzip nur soweit, dass ich f zu [mm] \bruch{(x^{2}+y^{2})}{(x^{2}+y^{2})^2+1} [/mm] umformen kann.

Meine Integrationsgrenzen sind, soweit ich nicht irre, wie folgt: [mm] \integral_{1}^{\wurzel{2}}{dx}\integral_{\wurzel{(1-x^{2})}}^{\wurzel{(2-x^2)}}{f(x,y) dy} [/mm]

Nun das Problem: ich hab alles versucht. Substitution mit [mm] u=x^{2}+y^{2}, [/mm] mit [mm] u=\wurzel{x^{2}+y^{2}}, u=\bruch{1}{\wurzel{x^{2}+y^{2}}} [/mm] und so weiter. Und nichts scheint das ganze wirklich zu vereinfachen. Ich gehe mal davon aus, dass ich etwas extrem Wichtiges übersehen habe. Weiß jemand, was?

        
Bezug
Verflixte Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 18:37 So 07.12.2008
Autor: rainerS

Hallo!

> Hallo ihr!
>  
> Ich sitze jetzt schon seit Längerem an einem Integral, bei
> dem ich einfach nicht weiterkomme. Es geht um das
> Flächenintegral von
> [mm]f(x,y)=\bruch{(x^{2}+y^{2})}{(x^{4}+y^{4}+2x^{2}y^{2}+1)}[/mm]
> über das Gebiet G mit [mm]1\le x^{2}+y^{2}\le2[/mm]
>
> Ich komme im Prinzip nur soweit, dass ich f zu
> [mm]\bruch{(x^{2}+y^{2})}{(x^{2}+y^{2})^2+1}[/mm] umformen kann.

Das ist schonmal sehr gut, das heisst nämlich, dass sich die Umformung in Polarkoordinaten anbietet.

> Meine Integrationsgrenzen sind, soweit ich nicht irre, wie
> folgt:
> [mm]\integral_{1}^{\wurzel{2}}{dx}\integral_{\wurzel{(1-x^{2})}}^{\wurzel{(2-x^2)}}{f(x,y) dy}[/mm]
>  
> Nun das Problem: ich hab alles versucht. Substitution mit
> [mm]u=x^{2}+y^{2},[/mm] mit [mm]u=\wurzel{x^{2}+y^{2}}, u=\bruch{1}{\wurzel{x^{2}+y^{2}}}[/mm]
> und so weiter. Und nichts scheint das ganze wirklich zu
> vereinfachen. Ich gehe mal davon aus, dass ich etwas extrem
> Wichtiges übersehen habe. Weiß jemand, was?

Ich würde das Integrationsgebiet in Polarkoordinaten [mm] $x=r\cos\phi$, $y=r\sin\phi$ [/mm] beschreiben. Da der Integrand nur von [mm] $x^2+y^2=r^2$ [/mm] abhängt, wird die Integration sehr einfach.


  Viele Grüße
    Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de