www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Vergleich zweier Schätzer
Vergleich zweier Schätzer < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vergleich zweier Schätzer: Mittlerer Quadratischer Fehler
Status: (Frage) beantwortet Status 
Datum: 12:11 Di 14.01.2014
Autor: custos

Aufgabe
Betrachtet sei in unserem Münzwurfbeispiel der alternative Schätzer [mm]\widetilde m(X)=\frac 1{n+2}(X+1)[/mm]. Zeigen Sie, dass der mittlere quadratischer Fehler für einige Werte von [mm]p[/mm] kleiner als der des arithmetischen Mittels ist.

[mm]X[/mm] ist eine Folge von Münzwürfen, also binomialverteilt, und wir wollen den Bernoulli-Parameter [mm]p[/mm] schätzen. Zu vergleichen sind [mm]\widetile m[/mm] (s. o.) und [mm]\widehat p(X)=\frac Xn[/mm] (arithm. Mittel). Mein Ansatz ist folgender:
[mm]\[ R(p, \widetilde m) \overset !< R(p, \widehat p)\\ \iff E_p\left(\left(\frac{X+1}{n+2}-p\right)^2\right) < E_p\left(\left(\frac Xn-p\right)^2\right)\\ \iff \sum_{x\in X}\left(\frac{x+1}{n+2}-p\right)^2\binom nx p^x(1-p)^{n-x} < \sum_{x\in X}\left(\frac{x}{n}-p\right)^2\binom nx p^x(1-p)^{n-x} \][/mm]
Soweit richtig? Wie finde ich diejenigen [mm]p[/mm], für die die Ungleichung gilt? Oder geht mein Ansatz in eine völlig falsche Richtung?

        
Bezug
Vergleich zweier Schätzer: Antwort
Status: (Antwort) fertig Status 
Datum: 13:38 Di 14.01.2014
Autor: luis52


> Oder geht mein Ansatz in eine völlig  falsche Richtung?

Moin, "falsch" ist vielleicht zu stark, aber umstaendlich. Nutze die alte Bauernregel

[mm] $\operatorname{E}[(T-p)^2]=(\operatorname{E}[T]-p)^2+\operatorname{Var}[T]=\operatorname{Bias}^2+\operatorname{Varianz}$. [/mm]

Alle relevanten Groessen kannst du aus [mm] $\operatorname{E}[X]=np$ [/mm] und [mm] \operatorname{Var}[X]=np(1-p)$ [/mm] berechnen.


Bezug
                
Bezug
Vergleich zweier Schätzer: Neuer Versuch mit Bias+Varianz
Status: (Frage) beantwortet Status 
Datum: 15:12 Di 14.01.2014
Autor: custos

Vielen Dank für den Tipp, ich versuche es mal mit Bias und Varianz:
[mm]\[ Var_p(\widehat p)+b(p, \widehat p)^2 \overset !< Var_p(\widetilde m) + b(p, \widehat m)^2 \iff \frac{p(1-p)}n+(p-p)^2 < \frac{np(1-p)}{(n+2)^2}+\left(p-\frac{np+1}{n+2}\right)^2[/mm]
Soweit richtig? Dann müsste ich nur noch bestimmen, für welche p die Ungleichung gilt? Aber so viel einfacher sieht mir das jetzt nicht aus, zumindest auf den ersten Blick. :S

(Stimmt es überhaupt, dass bspw. [mm]Var_p(\widehat p)=\frac{p(1-p)}n[/mm]? Ich habe das 1/n einfach quadratisch vor die Varianz der Binomialverteilung gezogen.

Bezug
                        
Bezug
Vergleich zweier Schätzer: Antwort
Status: (Antwort) fertig Status 
Datum: 17:18 Di 14.01.2014
Autor: luis52


> Vielen Dank für den Tipp, ich versuche es mal mit Bias und
> Varianz:
>  [mm]\[ Var_p(\widehat p)+b(p, \widehat p)^2 \overset !< Var_p(\widetilde m) + b(p, \widehat m)^2 \iff \frac{p(1-p)}n+(p-p)^2 < \frac{np(1-p)}{(n+2)^2}+\left(p-\frac{np+1}{n+2}\right)^2[/mm]
>  
> Soweit richtig? Dann müsste ich nur noch bestimmen, für
> welche p die Ungleichung gilt? Aber so viel einfacher sieht
> mir das jetzt nicht aus, zumindest auf den ersten Blick.
> :S

Nicht einfacher als [mm] $\sum_{x\in X}\left(\frac{x+1}{n+2}-p\right)^2\binom [/mm] nx [mm] p^x(1-p)^{n-x} [/mm] < [mm] \sum_{x\in }\left(\frac{x}{n}-p\right)^2\binom [/mm] nx [mm] p^x(1-p)^{n-x} [/mm]  $  ? Da bin ich anderer Ansicht.



>  
> (Stimmt es überhaupt, dass bspw. [mm]Var_p(\widehat p)=\frac{p(1-p)}n[/mm]?
> Ich habe das 1/n einfach quadratisch vor die Varianz der
> Binomialverteilung gezogen.

[ok]

Laut Mathematica ist

[mm] $Var_p(\widehat [/mm] p)+b(p, [mm] \widehat p)^2 [/mm] - [mm] Var_p(\widetilde [/mm] m) - b(p, [mm] \widehat m)^2=Var_p(\widehat [/mm] p)- [mm] Var_p(\widetilde [/mm] m) - b(p, [mm] \widehat m)^2$ [/mm]

gegeben durch [mm] $\frac{n (-8 (p-1) p-1)-4 (p-1) p}{n (n+2)^2}$ [/mm] ...


(Ohne Gewaehr.)



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de