www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Verhältnisberechnung Körper
Verhältnisberechnung Körper < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verhältnisberechnung Körper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:11 Di 15.04.2008
Autor: Marcus91

Aufgabe
Eine Kugel mit dem Durchmesser d und ein Würfel mit der Kantenlänge a sollen dasselbe Volumen besitzen.
In welchem Verhältnis stehen ihre Volumina zueinander ?

Wir schreiben Donnerstag eine Mathearbeit und da kommen leider diese Verhältnisberechnungen drin vor. (vom Lehrer angekündigt) Bloss leider bekomme ich das nicht richtig hin. Ich weiss bei der Aufgabe leider gar keinen Ansatz. Wir müssen alles mit Beweisen lösen. Wäre für etwas Hilfe dankbar, brauche keine kompletten Lösunge etc. bloss eine Hilfe wie man da erstmal rangeht an die Aufgabe. Haben dies leider auch nur einmal im Unterricht gemacht.
Mfg Marcus

        
Bezug
Verhältnisberechnung Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 22:25 Di 15.04.2008
Autor: leduart

Hallo
Schreib einfach das Volumen einer Kugel mit Durchmesser d hin, dann das Volumen eines Würfels mit a dann setz die beiden gleich.
dann bring d/a auf eine Seite alles andere auf die andere und zieh die entsprechenden Wurzeln.

Beispiel: Kreis mit Durchmesser dieselbe Fläche wie Quadrat mit a
Quadrat [mm] F=a^2 [/mm]  Kreis [mm] F=\pi*d^2/4 [/mm]
also [mm] a^2=\pi*d^2/4 [/mm]
[mm] a^2/d^2=\pi/4 a/d=\wurzel{pi}/2 [/mm]

Klar?
Gruss leduart

Bezug
                
Bezug
Verhältnisberechnung Körper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:46 Di 15.04.2008
Autor: Marcus91

Hallo,
erstmal Danke für deine Antwort. Es ist aber noch nicht ganz klar also ich hab das jetzt soweit aufgelöst : VK= Volumen der Kugel und VW = Volumen des Würfels

VK= [mm] \bruch{4}{3}*\pi*\bruch{d}{2}^3 [/mm]
VW= [mm] a^3 [/mm]

[mm] \bruch{4}{3}*\pi*\bruch{d}{2}^3 [/mm] = [mm] a^3 [/mm]   | [mm] /\bruch{d}{2}^3 [/mm]

[mm] \bruch{4}{3}*\pi* [/mm] = [mm] \bruch{a^3}{\bruch{d^3}{2}} [/mm]

Da weiss ich ehrlich gesagt nicht was ich machen soll bzw. wie man die ^3 wegbekommt mit wurzelziehen???



Bezug
                        
Bezug
Verhältnisberechnung Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 23:07 Di 15.04.2008
Autor: zahllos

Hallo,

du musst [mm] \frac{d}{2} [/mm] in Klammern setzen:

[mm] \frac{a^3}{(\frac{d}{2})^3}=\frac{4}{3}\pi [/mm]

Bezug
        
Bezug
Verhältnisberechnung Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 23:08 Di 15.04.2008
Autor: Al-Chwarizmi

Hallo Marcus,

Habe ich die Aufgabe richtig gelesen?  und hast du sie wirklich richtig wiedergegeben?  

Ich lese:

> Eine Kugel mit dem Durchmesser d und ein Würfel mit der
> Kantenlänge a sollen dasselbe Volumen besitzen.
>  In welchem Verhältnis stehen ihre Volumina zueinander ?

Wenn die Kugel und der Würfel das gleiche Volumen haben sollen, ist doch einfach  V(Kugel) = V(Würfel)  und also   V(Kugel) : V(Würfel) = 1
Zu rechnen gibt's gar nix !!!

Hoffentlich kommen beim Test keine schwierigeren Aufgaben...

Oder war da doch etwas ein bisschen anders?


Gruss     Al-Ch.



Bezug
                
Bezug
Verhältnisberechnung Körper: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:38 Mi 16.04.2008
Autor: Marcus91

Hallo, tut mir leid, habe mich verschrieben korrekt war er es im Mathebuch "In welchen Verhältnis stehen ihre Oberflächengrößen zueinander?"
direkt da drunter ist eine Aufgabe genau umgekehrt muss mich wohl in der Zeile versehen haben.

Bezug
                
Bezug
Verhältnisberechnung Körper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:44 Mi 16.04.2008
Autor: Marcus91

Weiss denn einer wie man das jetzt weiter berechnet ?
das ich ich d/2 in Klammern setzen muss bringt mir ja nun auch nichts weiter aber trotzdem danke
wäre dankbar für weitere HIlfe die arbeit naht


Bezug
                        
Bezug
Verhältnisberechnung Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 14:57 Mi 16.04.2008
Autor: M.Rex

Hallo

Du kannst, da die Volumen gleich sind, diese Gleichsetzen:

[mm] \bruch{4}{3}\pi\left(\bruch{d}{2}\right)^{3}=a³ [/mm]


Jetzt berechne mal die jeweilgen Oberflächen:

[mm] O_{\text{Kugel}}=4\pi*\left(\bruch{d}{2}\right)^{2} [/mm]
[mm] O_{\text{Würfel}}=6a² [/mm]

Jetzt bestimme mal das Verhältnis:

[mm] \bruch{O_{\text{Kugel}}}{O_{\text{Würfel}}}=\bruch{4\pi*\left(\bruch{d}{2}\right)^{2}}{a³} [/mm]
Mit der Bedinung der Volumengleichheit: [mm] (a=\wurzel[3]{\bruch{4}{3}\pi\left(\bruch{d}{2}\right)^{3}}) [/mm]
ergibt sich:

[mm] \bruch{O_{\text{Kugel}}}{O_{\text{Würfel}}}=\bruch{4\pi*\left(\bruch{d}{2}\right)^{2}}{\left(6\wurzel[3]{\bruch{4}{3}\pi\left(\bruch{d}{2}\right)^{3}}\right)^{2}} [/mm]

Und das, wenn du es ein wenig vereinfachst, ergibt nachher das Verhältnis.
(Das d kürzt sich nämlich komplett aus dem Term heraus)

Marius

Bezug
                                
Bezug
Verhältnisberechnung Körper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:03 Mi 16.04.2008
Autor: Marcus91

Ok danke habe ich soweit dann verstanden bloss wie bekommt man das ^3 beim vereinfachen von termen weg? da kann man ja keine wurzel ziehen

Bezug
                                        
Bezug
Verhältnisberechnung Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 15:07 Mi 16.04.2008
Autor: M.Rex

Hallo

Schreib mal um:  [mm] \wurzel[n]{x^{z}}=x^{\bruch{z}{n}} [/mm]

Jetzt kannst du nämlich die Potenzgesetze nutzen

Marius

Bezug
                                                
Bezug
Verhältnisberechnung Körper: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:17 Mi 16.04.2008
Autor: Marcus91

ah ok danke stimmt das hatten wir schonmal

Bezug
                                
Bezug
Verhältnisberechnung Körper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:43 Mi 16.04.2008
Autor: Marcus91

ich habe doch noch einmal eine Frage zur Antwort. Also deine Gleichung unter "Jetzt bestimme mal das Verhältnis: "
Warum steht da den [mm] a^3 [/mm] muss das ncht eigentlcih [mm] 6a^2 [/mm] sein ???



Bezug
                                        
Bezug
Verhältnisberechnung Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 16:43 Mi 16.04.2008
Autor: M.Rex


> ich habe doch noch einmal eine Frage zur Antwort. Also
> deine Gleichung unter "Jetzt bestimme mal das Verhältnis:
> "
>  Warum steht da den [mm]a^3[/mm] muss das ncht eigentlcih [mm]6a^2[/mm] sein
> ???

Yep, muss es. Ich habe das erst falsch gehabt und dann korrigiert. Diese Stelle habe ich dann aber vergessen

Marius

>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de