www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Verkettung injektiv
Verkettung injektiv < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verkettung injektiv: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:30 So 13.12.2009
Autor: Salamence

Aufgabe
Sei [mm] K_{256} [/mm] der Körper mit 256 Elementen.
Zeigen Sie, dass es eine lineare Abbildung [mm] \phi:K_{256}^{8} \to K_{256}^{10} [/mm] gibt, sodass alle Verkettungen [mm] \pi\circ\phi [/mm] injektiv sind (wobei [mm] \pi [/mm] eine beliebige der [mm] \vektor{10 \\ 8} [/mm] Projektionen [mm] K_{256}^{10} \to K_{256}^{8} [/mm] ist.
Dabei kommt die Tatsache zu tragen, dass es eine Untermenge [mm] M\subset K_{256}^{8} [/mm] mit |M|=10 gibt sodass alle Untermengen [mm] N\subset [/mm] M mit |N|=8 linear unabhängig sind.

Also ich weiß, dass eine lineare Abbildung [mm] \lambda [/mm] genau dann injektiv ist, wenn [mm] kern(\lambda)=\{0\}. [/mm] Jetzt stellt sich nur die Frage, ob die Verkettung überhaupt linear ist? Wären die Projektion linear so wäre dies auf jeden Fall der Fall, aber das ist doch nicht der Fall, oder? Gilt das triviale Kern-Kriterium trotzdem? Und wenn ja, wie zeige ich, dass der Kern trivial ist? Und wie verwende ich die Tatsache, dass es so eine Untermenge M gibt?

        
Bezug
Verkettung injektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 17:15 So 13.12.2009
Autor: pelzig


> Sei [mm]K_{256}[/mm] der Körper mit 256 Elementen.
> Zeigen Sie, dass es eine lineare Abbildung [mm]\phi:K_{256}^{8} \to K_{256}^{10}[/mm]
> gibt, sodass alle Verkettungen [mm]\pi\circ\phi[/mm] injektiv sind
> (wobei [mm]\pi[/mm] eine beliebige der [mm]\vektor{10 \\ 8}[/mm] Projektionen
> [mm]K_{256}^{10} \to K_{256}^{8}[/mm] ist.
> Dabei kommt die Tatsache zu tragen, dass es eine Untermenge
> [mm]M\subset K_{256}^{8}[/mm] mit |M|=10 gibt sodass alle
> Untermengen [mm]N\subset[/mm] M mit |N|=8 linear unabhängig sind.

> Also ich weiß, dass eine lineare Abbildung [mm]\lambda[/mm] genau
> dann injektiv ist, wenn [mm]kern(\lambda)=\{0\}.[/mm] Jetzt stellt
> sich nur die Frage, ob die Verkettung überhaupt linear
> ist? Wären die Projektion linear so wäre dies auf jeden
> Fall der Fall, aber das ist doch nicht der Fall, oder?

Also ich verstehe es so: die Projektionen [mm] $\pi:K_{256}^{10}\to K_{256}^8$ [/mm] genau die Abbildungen der Form [mm] $(x_1,x_2,...,x_{10})\mapsto(x_{i_1},x_{i_2},...,x_{i_8}$ [/mm] wobei die [mm] $i_k$ [/mm] beliebige paarweise verschiedene Zahlen zwischen 1 und 10 sind - dafür gibt es genau [mm] \vektor{10\\8} [/mm] viele Möglichkeiten. In jedem Falle sind alle diese Abbildungen offensichtlich linear!

> Und wie verwende ich die Tatsache, dass es so eine Untermenge M gibt?

Das habe ich auch noch nicht rausgefunden... :-)

Gruß, Robert

Bezug
        
Bezug
Verkettung injektiv: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Do 17.12.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de