www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Verkettung von Funkionen
Verkettung von Funkionen < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verkettung von Funkionen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:46 Sa 18.11.2006
Autor: tathy

Aufgabe
Ein Trog von 2m Länge hat Form eines senkrechten Prismas; der Querschnitt ist ein gleichseitiges Dreieck mit der Seitenlänge 50cm. In den Trog werden pro Sekunde 2 Liter Wasser gefüllt.
a) Ermitteln sie die Zuordnung h(t) [mm] \mapsto [/mm] V(t)
b) Wie schnell steigt der Wasserspiegel in den Augenblick, wo das Wasser im Trog 30cm hoch ist?

Hallo!

das ist eine Aufgabe aus dem Wahlteil. ich nehme mal an, dass in Aufgabenteil a) nach der Verkettung h [mm] \circ [/mm] V gefragt ist.
Ich könnte das Volumen des Trogs mit [mm] V_{trog}=a²/4*\wurzel{3}*200 [/mm]
berechnen. Und h ist ja: [mm] h=\wurzel{a²-a²/4} [/mm]
da 2 Liter Wasser pro sekunde in den trog fließen bedeutet das, dass v(t)=2 l/s *t ist, oder?
Hier komme ich nun nicht mehr weiter.
Vielleicht kann mir ja jemand von euch helfen. Vielen Dank schon mal im Voraus!

Gruß tathy

        
Bezug
Verkettung von Funkionen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:57 So 19.11.2006
Autor: rahu

guten morgen

ich nehme mal an das der trog mit der spitze nach unten steht.

die fläche deines dreiecks in abhänigkeit von h ist A = g*h. mit g = 2*cos(30°)*h.

also ist A = [mm] 2*cos(30°)*h^{2} [/mm] = [mm] \wurzel{3} [/mm] * [mm] h^2 [/mm]

und somit V = A * l = [mm] \wurzel{3} [/mm] * [mm] h^2 [/mm]  * l

nach h umgestellt: h = [mm] \wurzel{\bruch{V}{\wurzel{3}*l}} [/mm]

mit V = 2 [l/sec]

h(t) =  [mm] \wurzel{\bruch{Vo*2*t}{\wurzel{3}*l}} [/mm] //Vo ist anfangsvolumen

jetzt kannst du dir erstmal das Volumen berechnen was bereits im trog ist wenn das wasser 30cm hoch steht.
danach setzt du für t = 1sec und berechnest h(1).
und die geschwindigkeit ist dann h(1)/1 ;-)

viele grüße

ralf

Bezug
                
Bezug
Verkettung von Funkionen: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 13:57 So 19.11.2006
Autor: ullim

Hi,

ich glaube thaty hat recht mit dem Volumen,

[mm] V(h)=\br{h^2}{\wurzel{3}}*L [/mm] und nicht [mm] V(h)=\wurzel{3}*h^2*L [/mm]

d.h. also [mm] h=\wurzel{ \br { \wurzel{3}*V } { L } } [/mm]

berücksichtigt man ein Anfangsvolumen so lautet die Formel für die Höhe

[mm] h(t)=\wurzel{ \br { \wurzel{3}*(V_0+2000*t) } { L } } [/mm] und [mm] V_0 [/mm] ist das Anfangsvolumen für eine Füllstandshöhe von 30 cm.

Also ist die Zeit [mm] t_0 [/mm] zu berechnen, bis wann die Füllstandshöhe erreicht ist. Die Geschwindigkeit mit der der Wasserspiegel steigt ist dann die zeitliche Ableitung von h(t) zum Zeitpunkt [mm] t_0, [/mm] also [mm] v=\br{d}{dt}h(t) [/mm] für [mm] t=t_0 [/mm]

[mm] t_0 [/mm] ergibt sich als Lösung von V(30 [mm] cm)=2000*t_0 [/mm] also [mm] t_0=30*\wurzel{3} [/mm] daraus folgt

[mm] v(t_0)=\br{\wurzel{6}}{12}\br{cm}{s} [/mm]

mfg ullim

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de