www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Verkettung von Funktionen
Verkettung von Funktionen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verkettung von Funktionen: Ganzrationale Funktionen
Status: (Frage) beantwortet Status 
Datum: 15:16 Fr 23.09.2011
Autor: GrueneFee

Gegeben seien die beiden ganzrationalen Funktionen f und g mit f(x) = [mm] x^2+3x-4 [/mm] und g(x) = [mm] 3x^2-4x [/mm]

Ich wollte euch bitten mal zu schauen ob meine Rechnung so korrekt ist oder ob sich Fehler eingeschlichen haben. Vielen Dank!

a)Verkettung f o g

[mm] (3x^2-4x)^2 [/mm] + [mm] 3(3x^2-4x)-4 [/mm]
[mm] 9x^4-24x^3+16x^2+9x^2-12x-4 [/mm]
[mm] 9x^4-24x^3+25x^2-12x-4 [/mm]

b)Verkettung g o f

[mm] 3(x^2+3x-4)^2 -4(x^2+3x-4) [/mm]
[mm] 3(x^4+6x^3+x^2-24x-16)-4x^2-12x+16 [/mm]
[mm] 3x^4+18x^3+3x^2-72x-48-4x^2-12x+16 [/mm]
[mm] 3x^4+18x^3-x^2-84x-32 [/mm]

Ganz liebe Grüße,
Die Gruene_Fee

        
Bezug
Verkettung von Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:24 Fr 23.09.2011
Autor: schachuzipus

Hallo Fee,


> Gegeben seien die beiden ganzrationalen Funktionen f und g
> mit f(x) = [mm]x^2+3x-4[/mm] und g(x) = [mm]3x^2-4x[/mm]
>  
> Ich wollte euch bitten mal zu schauen ob meine Rechnung so
> korrekt ist oder ob sich Fehler eingeschlichen haben.
> Vielen Dank!
>  
> a)Verkettung f o g
>  
> [mm](3x^2-4x)^2[/mm] + [mm]3(3x^2-4x)-4[/mm] [ok]
>  [mm]9x^4-24x^3+16x^2+9x^2-12x-4[/mm]
>  [mm]9x^4-24x^3+25x^2-12x-4[/mm] [daumenhoch]
>  
> b)Verkettung g o f
>  
> [mm]3(x^2+3x-4)^2 -4(x^2+3x-4)[/mm] [ok]
>  
> [mm]3(x^4+6x^3+x^2-24x\red{-}16)-4x^2-12x+16[/mm]

Das sollte doch [mm]\red{+}16[/mm] sein, oder? Das konstante Glied der "Quadratklammer" ist doch [mm](-4)(-4)=+16[/mm]

>  [mm]3x^4+18x^3+3x^2-72x-48-4x^2-12x+16[/mm]
>  [mm]3x^4+18x^3-x^2-84x-32[/mm]

Fast ganz richtig, am Ende muss es nur [mm]\red{+}32[/mm] lauten, ansonsten ist alles bestens!

>  
> Ganz liebe Grüße,
>  Die Gruene_Fee

Gruß

schachuzipus


Bezug
                
Bezug
Verkettung von Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:34 Fr 23.09.2011
Autor: GrueneFee

Hey,

danke für die schnelle Antwort und schön das fast alles richtig ist :) ... Da hätte ich gleich noch eine Frage. Und zwar wird gefragt welchen Grad die Verkettung der Funktion f vom grad n mit der Funktion g vom grad m hat? Da weiß ich leider nicht weiter. Ich würde auch gern die zwei Funktionen hier zeigen, aber ich finde einfach nicht heraus wie der Tastaturbefehl für ein kleines N unter einem Buchstaben lautet....

Bezug
                        
Bezug
Verkettung von Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:45 Fr 23.09.2011
Autor: schachuzipus

Hallo nochmal,


> Hey,
>  
> danke für die schnelle Antwort und schön das fast alles
> richtig ist :) ... Da hätte ich gleich noch eine Frage.
> Und zwar wird gefragt welchen Grad die Verkettung der
> Funktion f vom grad n mit der Funktion g vom grad m hat? Da
> weiß ich leider nicht weiter.

Na, überlege mal, f sei vom Grad n, g vom Grad m.

Etwa [mm]f(x)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0[/mm] und [mm]g(x)=b_mx^m+b_{m-1}x^{m-1}+...+b_1x+x_0[/mm]

Zunächst betrachte mal [mm]f\circ g(x)=f(g(x))[/mm]

Der höchste Exponent von [mm]x[/mm], der in [mm]g[/mm] auftritt ist [mm]m[/mm], das setzt du in [mm]f[/mm] ein, das als höchsten vorkommenden Exponenten von x [mm]n[/mm] hat.

Also [mm]f(g(x))=a_n\left(b_mx^m+b_{m-1}x^{m-1}+...+b_1x+x_0\right)^n+a_{n-1}\left(b_mx^m+b_{m-1}x^{m-1}+...+b_1x+x_0\right)^{n-1}+...+a_1\left(b_mx^m+b_{m-1}x^{m-1}+...+b_1x+x_0\right)+a_0[/mm]

Interessant ist nur die erste Klammer, da dort der höchste vorkommende Exponent von [mm]x[/mm] entsteht, alle anderen Produkte, die [mm]x[/mm]-Terme enthalten, haben kleinere Exponenten.

Wie ist denn nun der höchste auftretende Exponent?

Der ergibt sich aus dem ersten Summanden in der ersten Klammer, rechne den mal mitsamt seinem Koeffizienten aus ...


Überlege dann mal für [mm]g\circ f(x)=g(f(x))[/mm]

> Ich würde auch gern die
> zwei Funktionen hier zeigen, aber ich finde einfach nicht
> heraus wie der Tastaturbefehl für ein kleines N unter
> einem Buchstaben lautet....  

Meinst du als Index?

Das geht einfach mit dem Unterstrich _

Indizes, die länger als 1 Zeichen sind, musst du (genau wie Exponenten) in geschweifte Klammern packen.

Also a_nergibt [mm]a_n[/mm]

a_{n-1}ergibt entsprechend [mm]a_{n-1}[/mm]


Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de